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ABSTRACT: Due to their computational intensity, long-range corrections of three-body
interactions are particularly desirable, while there is no consensus of how to devise a cutoff
scheme. A cutoff correction scheme for three-body interactions in molecular simulations is
proposed that does not rest on complex integrals and can be implemented straightforwardly. For
a limited number of configurations, the three-body interactions are evaluated for a desired and a
very large cutoff radius to determine the required corrections.

Molecular simulations have established themselves as an
indispensable tool for science and application research.

Molecular dynamics (MD) and Monte Carlo (MC) simu-
lations provide a direct route from the interactions of
molecular substances to macroscopic properties of scientific
or technological interest.1,2 Molecular simulations rely on
interaction potential models for that purpose. Pair interaction
models, such as the Lennard-Jones potential, are particularly
common due to their efficient evaluation with highly scalable
algorithms, such as linked cell methods or Verlet lists, which
enable calculations for short-range pair potentials in a linear
running time O(N) based on the number of molecules N.
However, the limitation to pairwise additive interactions is

an approximation that is only physically valid to a limited
extent. The total potential energy of a real system of N
molecules of the same species, U(r1, ..., rN), can be expanded as
a series of n-body interactions,3 un
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In particular, it has been shown that nonadditive three-body
interactions are essential for the quantitative description of
several fluid properties, including bulk viscosity,4 surface
tension,5 and speed of sound.6

In systems with short-range interactions, the total potential
energy is dominated by interactions with neighbors close to the
molecule of interest, so that it is a common practice to increase
computational performance by setting the pair potential u2(r)
to zero for intermolecular distances r > rc, where rc is the
specified cutoff distance. The associated error can be made
arbitrarily small by choosing a sufficiently large rc.

As the main obstacle to taking into account many-body
interactions is the extreme computational intensity, it looks
natural to speed up computations by using some sort of
truncation of many-body interactions similar to the cutoff
distance for pair interactions. In systems of three molecules,
needed to compute three-body interactions, there are three
distances involved, so the obvious way of cutting off
interactions would be limiting each of the three distances.
Other methods can also be used to apply a cutoff, including
limiting at least a pair of the distances,7 a sum of all three
distances,8 or the product of all three distances.9 All of these
approaches face some trade-off between computational
efficiency and accuracy.
Systematic errors which are introduced by the truncation of

pairwise intermolecular interactions are usually corrected for
by adding analytic tail contributions to thermodynamic
properties calculated under the assumption that the radial
distribution function g(r) satisfies the condition1,2

>g r r r( ) 1 at c (2)

The errors due to truncation of many-body interactions are
generally lower than those for pair interactions due to faster
decay of the interaction energy with the distance between
molecules. There are, however, many-body contributions to
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the intermolecular interaction which decay relatively slowly so
that computational performance would benefit from their
truncation in conjunction with corresponding long-range
corrections to thermodynamic properties. An example is the
triple-dipole dispersion interaction derived by Axilrod and
Teller,10 and Muto,11 as well as its extensions.12 The Axilrod−
Teller−Muto (ATM) potential is given by

=
+

u r r r C
r r r

( , , )
1 3 cos cos cos

( )ATM 12 23 31 ATM
1 2 3

12 23 31
3

(3)

where the rij are the lengths of the sides, θi are the angles of the
triangle formed by three molecules, and CATM is the triple-
dipole interaction coefficient. Being the leading term in the
multipole expansion of the dispersion interaction, the ATM
interaction decays more slowly with intermolecular separation
than higher-order dispersion contributions as well as short-
distance exchange and induced-polarization interactions. As a
result, the ATM interaction is the most significant one among
different long-range contributions to many-body interactions.
The long-range correction for the three-body energy can be

represented by9,13
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Integration in eq 4 is carried out over sides of triangles rij = |ri
− rj|, formed by the coordinates ri of three molecules forming a
triplet, and over Euler angles Ω = (ω1, ω2, ω3) describing the
orientations of these triangles.
Integration over orientation spans the rotation group SO(3)

and can be carried out analytically. Integration over sides of the
triangle spans the domain D, which depends on the three-body
correction scheme. In this letter, we consider two approaches:
(i) Pair cutof f. This approach is a straightforward general-
ization of the method used for pair interaction. A three-
body interaction is considered to be long-range if any of
the three distances in the triplet is greater than the cutoff
distance rc2. In this case, the domain D is defined by the
conditions rij > rc2.

(ii) Product cutof f. The distances between the molecules in a
triplet enter Equation 3 as the product r12r23r31. As
pointed out by Rittger,9 this suggests that only the
contributions from triplets with

<r r r rc12 23 31 3
3

(5)

should be computed explicitly, where rc3 is a constant.
This condition is viewed as a three-body analogue of

<rr rc
2. In this case, the domain D is defined by

>r r r rc12 23 31 3
3 . Explicit expressions for the integration

limits are provided by Rittger.9

The integration domain can be defined for other approaches
in a similar way.
Evaluation of the integral (4) requires knowledge of the

third-order radial distribution function g(3)(r12, r13, r23). A
straightforward generalization of the approach used to address
this problem in the case of two-body interaction would be
using the Kirkwood superposition approximation14

=g r r r g r g r g r( , , ) ( ) ( ) ( )(3)
12 13 23 12 23 31 (6)

Use of this approximation, however, is known to introduce
errors in structural and thermodynamic properties.15−17 On
the other hand, an accurate calculation of g(3) would lead to
computational overhead decreasing the benefit of using a
cutoff.
In this letter, we propose a new strategy to calculate long-

range corrections to thermodynamic properties in molecular
simulations. The idea is to sample long-range corrections
directly from simulation, within a small fraction of time steps,
thus providing a universal method to reduce computational
effort without additional programming effort. In the following,
we illustrate the effectiveness of the proposed method with a
particular case study.
For this purpose, both cutoff schemes were introduced into

the simulation code ms218 for MD. According to eq 1, a two-
body potential is required to match the three-body potential.
In this study, it was an augmented Tang-Toennies potential
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with f 2n denoting the usual damping functions of the form
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Its parameters A, a1, a2, a−1, b and C2n for n = 3, ..., 8, were
adapted by Jag̈er et al. to represent krypton.19 The triple-dipole
interaction coefficient CATM for the ATM potential was also
taken from ref 19.
A homogeneous supercritical fluid state at 300 K was

sampled with N = 1372 molecules in the NVT ensemble.
Initially, the system was equilibrated for 104 time steps with rc2
= rc3 = 5 σ, where σ = 3.5 Å roughly corresponds to the
molecular diameter and the parameter to quantify the energy is
ε, with ε/kB = 100 K and the Boltzmann constant kB.
Upon simulation restart, a cutoff rc3 < rc2 was additionally

specified. For another 104 time steps, the molecular
interactions were evaluated twice, i.e. up to rc3 = rc2 and
additionally up to rc3 < rc2. Both results were stored, such that
the long-range corrections for the residual internal energy u
and the pressure p were obtained as their mean difference.
The resulting long-range corrections were validated with

additional simulations where rc3 < rc2 was fixed from the
beginning and used to determine the interactions. A simulation
run comprised 2 × 105 time steps for equilibration, followed by
a production run of 107 time steps. Figures 1 and 2 illustrate
the behavior of u and p for various values of rc3 as well as the
outcome when the previously obtained long-range correction
was added to the new simulation results.
Clearly, the approach to sample for a few time steps up to a

large cutoff radius, while simultaneously to a chosen smaller
one, and using their difference for the long-range corrections,
works for both cutoff schemes.
Furthermore, it can be seen that the pairwise three-body

cutoff scheme shows for a given cutoff radius slightly smaller
deviations from the converged value than the product three-
body cutoff scheme. A triplet satisfying the pair constraint
necessarily also satisfies the product constraint, but the
converse does not hold. Hence, the product scheme considers
triplets that are neglected by the pair scheme.
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Since cutoff schemes were developed to reduce the overall
computation time in the first place, the calculation of
interactions for additional triplets creates another drawback
of the product scheme. Figure 3 shows the average
computation time for 103 MD time steps. All simulations
were executed with the same MPI parallelization scheme and
on the same computer architecture. A speedup of the
simulation is of course achieved by any reduction of rc3, but
less for the product cutoff scheme than for the pair cutoff
scheme, which is 10−25% faster.

The presented method for calculating long-range corrections
does not involve approximations that are typically used in
analytical approaches. In order to illustrate the error
introduced by such approximations, we calculated the long-
range correction to the three-body energy by numerically
evaluating the integral in eq 4. For this purpose, the
superposition approximation was employed, namely, eq 6
which avoids computation of the third-order radial distribution
function and does not require additional simulations. More-
over, an assumption analogous to eq 2 was used for the pair
interactions, which is necessary to avoid computation of g(r) at
large distances.
Since at least two or three distances between molecules in

triplets excluded by the cutoff criterion are larger than rc3, the
approximation g(r) ≈ 1 at r > rc3 was adopted. However, this
approximation cannot be used for the third (smallest) distance
because it is generally arbitrary, and the integral (4) would
diverge due to the large contribution from the three-body
interaction at small distances. Still, the overall contribution of
such triplets is small because of the repulsion due to the pair
interaction. We therefore assumed that the radial distribution
function for the shortest distance in the triplet is equal to the
Boltzmann factor, g(r) = exp(−u2(r)/kBT), which tends to
unity as r increases. Note that this approximation is usually
used at low densities20 when the pair interaction between a
molecule and its closest neighbor is dominant compared to
interactions with other molecules in the system. In the present
case, the pair interaction with the nearest neighbor is dominant
over other interactions, if the molecules are very close to each
other so that interactions with other molecules can be
neglected. With these approximations, the third-order radial
distribution function is given by

g r r r u r k T( , , ) exp( ( )/ )(3)
12 13 23 2 12 B (9)

where r12 < r13, r12 < r23, and the long-range correction for the
three-body energy, eq 4, can be estimated without additional

Figure 1. Reduced residual internal energy u/ε (top) and reduced
pressure p σ3/ε (bottom) at T = 300 K and ρ = 16 mol l−1 for both
cutoff schemes with and without long-range correction (lrc). Black
dashed lines indicate the mean value.

Figure 2. Reduced residual internal energy u/ε (top) and reduced
pressure p σ3/ε (bottom) at T = 150 K and ρ = 26.76 mol l−1 for both
cutoff schemes with and without long-range correction (lrc). Black
dashed lines indicate the mean value.

Figure 3. Simulation time for 1000 MD steps (top) and dependence
of the long-range correction to u/ε obtained from simulation and
integration (bottom) at T = 300 K and ρ = 16 mol l−1. Error bars are
within symbol size.
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simulation data on the third-order radial distribution function
g(3).
The results of a numerical integration using a GSL

implementation of the VEGAS Monte Carlo integration
algorithm21,22 over the domain for the product cutoff approach
in comparison with simulation data are shown in Figure 3. For
larger cutoff radii, numerical integration and pair cutoff data
show a surprising agreement, which slightly deteriorates at
smaller radii rc3 where the simulation data are underestimated.
We have proposed a new strategy to calculate long-range

corrections to thermodynamic properties in molecular
simulations and illustrated the effectiveness of the proposed
method with a particular case study. This strategy is universal,
as it is applicable to modeling a wide range of thermodynamic
properties using different methods (MD, MC) and any
combination of pair and three-body interaction potentials,
without additional analytical or programming effort. At the
same time, it allows reducing computation effort because
simulation involving the computationally expensive long-range
part of the three-body interaction is carried out only in a small
fraction of time steps.
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