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Detachment force of particles from fluid droplets

Rammile Ettelaiea and Sergey V. Lishchuk*b

We calculate the deformation of a spherical droplet, resulting from the application of a pair of opposite

forces to particles located diametrically opposite at the two ends of the droplet. The free-energy

analysis is used to calculate the force–distance curves for the generated restoring forces, arising from

the displacement of the particles relative to each other. While the logarithmic dependence of the ‘‘de

Gennes–Hooke’’ constant on the particle to droplet size ratio, n, is rather well known in the limit of very

small n, we find that for more realistic particle to droplet size ratios, i.e. n = 0.001 to 0.01, the additional

constant terms of O(1) constitute a significant correction to previously reported results. We derive the

restoring force constant to be 2pg[0.5 � ln (n/2)]�1, in perfect agreement with the exact semi-numerical

analysis of the same problem. The deviation from the linear force–displacement behaviour, occurring close

to the point of detachment, is also investigated. A study of the energy dissipated shows it to be an increas-

ingly dominant component of the work done during the detachment of the particles, as n decreases. This

indicates the existence of a significantly higher energy barrier to desorption of very small particles, compared

to the one suggested by their adsorption energy alone. The influence of the line tension on the detachment

force is also considered. It is shown that where line tension is important, the contact angle is no longer a

constant but instead alters with the displacement of the particles from their equilibrium positions.

1 Introduction

The behaviour of small particles trapped at liquid–liquid or
liquid–gas interfaces continues to be an area of great interest
both from an academic point of view, as well as for its
importance in many industrial applications. The adsorption
of hydrophobic or partially hydrophobic particles to the surface
of bubbles during the froth flotation process is often considered
to be the most widespread technique in recovery and separation
of ore minerals in mining and related industries.1,2 The crucial
role played by particles adsorbed at surfaces, in destabilisation
of bubbles has similarly been well known and frequently used to
prevent foaming,3,4 as for example in defoaming of liquids used
in air-conditioners and cooling systems. Interestingly, it is now
also well recognised that particles with appropriate surface
chemistries, and hence contact angles, can stabilise bubbles
and emulsion droplets against many different modes of colloidal
instability, including coalescence, Ostwald ripening and dispro-
portionation.5–8 Indeed, the adsorption of nanoparticles onto the
surface of microbubbles remains one of the very few methods that
seem to be genuinely able to arrest the disproportionation process
in such systems and ensure the long term stability for these very

small bubbles.9 The adsorption energy for a particle adsorbed at a
liquid–air interface is easily shown to be7,10

Ead = pga2(1 � cos y)2 (1)

where g is the surface tension, a is the radius of the particle,
and y is the contact angle between the liquid and a solid
substrate comprising of the same material as that for the
particle. More precisely, the energy difference as given by
eqn (1) refers to the energy of a particle that has been fully
displaced from the interface into the bulk phase, as measured
relative to its energy when setting at equilibrium at the surface.
The particle displacement here is assumed to be into the more
dense liquid phase, i.e. the one into which the contact angle y is
traditionally measured. If the particle is moved into the opposite
phase, then the factor (1 � cos y) in eqn (1) needs to be replaced
with (1 + cos y). The result in eqn (1) also takes into account any
interfacial energy associated with the creation of an additional
circular contact area between the two bulk phases, which
originally would have been occupied by the particle when at
the interface. Even for a small nanoparticle of radius a = 10 nm,
the adsorption energy can be several tens of thousands of kBT.
Thus, particles, once adsorbed, are rather difficult to displace
from the interfaces. It is this property which makes the particles
such a good colloidal stabilisers of emulsions and bubbles. In a
similar manner, particles accumulating at the interfaces between
two phases, formed during the demixing of two fluids through
spinodal decomposition, can arrest the phase separation at
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some intermediate stage during the process. This gives rise to
the so called bicontinuous interfacially jammed emulsion gel
(bijel) systems,11–14 first predicted theoretically by Cates and
co-workers.15

While the adhesion of particles to the surface seems
irreversible in many situations, it is nonetheless possible to
cause desorption of these through the application of a suitable
external field. For example magnetic or electrically polarisable
particles are shown to detach from the interfaces in the
presence of strong enough magnetic or electrical fields.16–18

Similarly, a higher density of particles relative to the surround-
ing liquid medium may be sufficient to detach the particles
from the bubbles, as the bubbles try to rise and the particles are
pulled down by the gravity.19 Detachment of the particles from
the surface of such Pickering stabilised bubbles or droplets
normally leads to the breakup of the foam or the emulsion
system. The triggered destabilisation of the emulsions has
many potential applications, as for example in the targeted
release of drugs. Development of such vehicles for controlled
delivery could benefit from a clearer understanding of the
nature and magnitude of restoring forces that result from the
displacement of a particle, when it is disturbed from its
equilibrium position on an interface. Control of the particle
adsorption or detachment is important in liquid marbles which
have promising applications in micro-chemical and bioreac-
tors20–22 and tuning droplet impact dynamics.23

On the experimental side, several studies involving atomic
force microscopy and micro-force balance have provided a
detail account of the forces that result during the approach,
subsequent attachment, and finally the detachment of particles
from the surface of bubble.24–32 Close to the surfaces of bubbles,
and prior to the attachment of the particle, the forces involved
are a combination of the well-known colloidal interactions,
namely van der Waals, electrostatic and hydrophobic forces.26,33

Where the surface of particles or bubble is covered by macro-
molecules, additional interactions involving steric repulsion, as
well as bridging and depletion attractions, may also be pre-
sent.34–36 At the point of attachment, there is a discontinuous
jump in the value of measured force. From this point onward the
variation of the force with displacement is largely governed by
the interfacial tensions between the two surrounding fluids
(e.g. air–water or oil–water) and the fluids and the particle. In
particular, the experimental results suggest that in the majority
of cases the restoring forces generated as a result of the
displacement of a particle trapped on the surface of a bubble
or droplet, away from its equilibrium position, varies almost in
a linear fashion with the displacement of the particle.30 This
linear Hookean type variation, first suggested by Joanny and de
Gennes,37,38 continues to distances almost up to the point where
the particle becomes detached from the droplet, i.e. where the
force reaches its maximum value, shortly prior to the particle
leaving the interface. However, determining the range of validity
of ‘‘de Gennes–Hooke’s’’ law analytically is an interesting problem
that is considered here.

The theoretical treatment of the detachment of the particles
from fluid interfaces has largely focused on situations involving

planar interfaces, where the gravitational, and in some cases
also the buoyancy forces, are included.39–50 Such situations are
of course what one encounters in problems relating to the
process of froth flotation. These types of analysis provide limits
on the size of particles that can be floated on the interface and
also the maximum detachment forces necessary to pull the
particles out and away from the surface. Huh and Scriven51

provide tabulated numerical data for the shape of an equili-
brium fluid that extends far outwards from a circular line of
contact away from an immersed cylinder, given as a function
of radius of the contact circle, contact angle, surface tension
and density difference across the interface. Analytical results
for the same problem have been obtained by Rapacchietta and
Neumann43 in the limit of small Bond numbers (ratio of gravity
forces to capillary ones). These authors considered forces
acting on the particle during the detachment process and
proposed the particle/interface aggregate stability criteria based
on the work of detachment of the particle from the interface.
The detachment work of a small sphere from a surface was also
considered analytically by Pitois and Chateau47,48 making use
of Derjaguin approximation. Comparing their analytical and
experimental data, the importance of the contact angle hysteresis
for the detachment work was highlighted in this work. Kowalczuk
and Drzymala,49 using equations derived by Scheludko et al.,41

show how experiments involving attachment and detachment
of particles to a liquid interface could be used to determine the
static, attachment and detachment contact angles using a
Washburn-type technique. Indeed, pulling a sphere through the
liquid interface is the basis for measuring the surface tension and
contact angle of liquids on spherical surfaces in a technique often
referred to as sphere tensiometry.40,44,46,52–54 O’Brien,45 working
in the low Bond number limit (Bo { 1), has proved that the
restoring force resulting from the displacement of the particle
from its equilibrium position on the interface can satisfactorily
be described as a linear function of the distance, in a similar
manner to the Hooke’s law as had been anticipated by Joanny
and de Gennes.37

The inclusion of gravity in all of the calculations mentioned
above, even those involving small Bo numbers, and in particular
for the fluid phase, is rather crucial in allowing such theoretical
analysis to be performed. The boundary condition assuming a
flat interface at distances far from the contact line, will fail to
provide an analytical solution in the complete absence of gravity.
The situation is best demonstrated by considering an air–water
interface where the displacement of the particle into the air
causes the distortion of the interface. The rise of the liquid
pulled up with the particle involves additional gravitational
energy. For example, for a rather simple case involving a
rectangular slab held partially immersed in a liquid, the height
to which the fluid will rise next to the slab is found to be

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=rgð Þð1� sin yÞ

p
when yo p/2, where g is the gravitational

strength and r is the density of the fluid.55 In the absence of
gravity where rg - 0 we have h - N. In the same manner, the
distance away from the particle to which the distortion of the
interface extends also diverges in the absence of gravity. This
holds true for the slab problem55 above, as well as cylindrical
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objects42,51 and cases involving spherical particles.41,43 Clearly
this is expected, since in absence of the gravitational energy
associated with the distortion of the liquid interface, the whole
bulk of the liquid will simply move up with the particle such
that the position of the particle relative to the liquid interface
remains the same as its equilibrium value.

In problems involving the displacement of particles from
the surface of bubbles or droplets dispersed throughout a
medium, as for example in Pickering emulsions, inclusion of
gravity is neither appropriate nor relevant. It would be incorrect
to attribute a gravitational energy to any distortion of the
interface in these circumstances. It is clear then, that in order
to be able to make progress with the theoretical calculations
one has to either apply an equal but opposite counter force
(to the one acting on the particle) to some part of the particle–
droplet system, or alternatively impose some constraint to
prevent the displacement of the system as a whole. One
possible approach would be to apply a pair of opposite forces
of magnitude F to the particle and the centre of mass of the
droplet. In a real situation such a counter force may arise from
the drag experienced by the droplet, given by F B 6pZRu if the
spherical shape of the droplet is not severely distorted. Here,
u is the velocity of the system under the influence of the external
force applied to the particle, R is the radius of the droplet, and Z
the viscosity of the dispersion medium. Alternatively, one may
impose the ‘‘effective’’ constraint that the liquid continues to
fully wet the surface of the container in which it resides, as the
particles are slowly displaced and eventually become detached
from the air–liquid interface. This is the approach adopted by
Davies et al.50 where also the volume of the liquid phase is kept
constant. In their study, the detachment energy for a variety
of particles with different spheroidal shapes, including oblate
and prolate spheroids, is numerically calculated using a suitable
lattice Boltzmann simulation scheme. All else being the same, it
is found that the detachment energy can be expressed as a
function of the particle aspect ratio and the height of the centre
of mass of the particle above the fluid interface at equilibrium.50

These results are used in a latter study by the same authors to
consider the impact on an ensemble of such spheroid particles
accumulated at a liquid interface.56 Note that the requirement
for the container walls to be fully wetting, together with constant
volume of the liquid phase, ensure that the air–water interface
will once again be a flat one at distances far from the particle,
even when no gravity is present.

Yet, a further possibility in choosing a suitable constraint
is the one employed by Guzowski et al.57 There, the centre
of mass of the droplet (or the droplet + particle system) is
restrained, remaining fixed throughout the calculations
irrespective of the distortion of the droplet shape. The actual
problem considered in this work consisted of a particle which
sat on the surface of a sessile droplet, to which a force F was
then applied. As such, the calculations of Guzowski et al.
involved two distinct contact angles; one between the particle
and the droplet and the other between the droplet and the
substrate. They derive an interesting, and in principle rather
general, formalism for solving this problem. They argue that

the quantity e = F/(gR) (i.e. the ratio of the pressure perturba-
tion due to force F applied to the particle to the excess Laplace
pressure inside the droplet) remains small in almost all
practical situations. Thus, the equations describing the dis-
turbance of the interface, the shift in the position of the
particle and the values of the Lagrange multipliers, associated
with constraints imposed on total volume and fixed position
of the centre of mass of the droplet, can all be linearised in
this small parameter e. The linear nature of the equations
allows the problem to be formulated in terms of Green’s
functions, with the latter giving the response of the interface
to a unit point force applied at any desired position on the
surface of the droplet. Using the method of images, Guzowski
et al.57 derive explicit expressions for their Green’s functions,
in the special symmetrical case where the contact angle
between droplet and substrate is 90. In principle then, the
response of the interface to the application of a force to a
small but finite sized particle, can be obtained by replacing
this particle with a series of appropriate point forces acting
along an imaginary surface passing through the particle.
However, in their work Guzowski et al. mainly focus on cases
involving very small particles (n � a/R { 1) where, at least for
the interfacial disturbance far from the particle (distances
much larger than a) it suffices to treat the particle as a point
source. The results of this approach are evaluated against
‘‘exact’’ numerical (finite-elements) and semi-analytical solu-
tions (solving the non-linearised equations in special cases,
but with boundary conditions having to be fitted numerically)
and found to provide a good level of agreement.

In the current study we consider a droplet (or bubble) having
two particles adsorbed at its surface placed diametrically oppo-
site each other. The symmetry of the problem and hence the
mathematical formulation is identical to one of the earlier
papers on an axisymmetric capillary bridge by Orr, Scriven
and Rivas.58 We apply equal but opposite forces to each particle
as is shown schematically in Fig. 1. The symmetrical nature of
the problem, considered in this way, provides significant
simplifications allowing us to obtain exact analytical expres-
sions for the distortion of the spherical bubble, and hence the
force vs. displacement curves as the particles are pulled away
from each other. In the limit where the radius of droplet
R - N, the current problem becomes identical to the one
studied by Davies et al. for their spherical particle case.50 Our
problem is identical to that considered by Guzowski et al. when
the contact angle between their sessile drop and the substrate
is 90 and the particle is located at the apex of the drop. We
attempt to extend their calculations to provide analytical
expressions for the distortion in the shape of the droplets in
the small n limit. While Guzowski et al. also considered
simplifications to their more general analysis for small particle
cases,57 here our analytical expressions for the distortion of the
shape of the droplets, as well as force vs. particle displacement,
are obtained without resort to such a linearisation in the force
term. This allows for a very accurate description of the inter-
facial distortion and the force displacement relation right
up to the point of the detachment of the particle, and even at
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distances very close to the particle (i.e. oa). Thus, one is able to
assess the range of the validity of the ‘‘Hooke–de Gennes’’ law
and the linearity of the force displacement relationship.
Furthermore, Guzowski et al. showed that to the leading term,
the dependence of the ‘‘compliance constant’’ on the size ratio
of the particle to the droplet, n, is logarithmic.57 While for very
small values of n this term alone suffices in determining the
value of the compliance, we note that typical size ratio for
Pickering stabilised emulsions in practice lie in the range
between 0.001 and 0.01 (e.g. nanoparticles of a B 5 nm
stabilising droplets of R B 1 mm). These values of n are small,
but nonetheless �ln n B 4.6 to 6.9. This means that the
presence of a constant term of BO(1) can constitute a major
correction to the actual value of the ‘‘compliance constant’’,
which can only be ignored in problems where the size ratio is
unrealistically small. It is one of our aims in this work to
calculate a more accurate value for the compliance constant
that should remain valid for these small but nonetheless more
practical values of n.

The paper is organised as follows. The details of our model
system are described in Section 2. Section 3 presents, without
derivation, the key result of the present work: i.e. the analytical
expression for dependence between the force and the displace-
ment of the particles in the limit of small ratio of particle to
droplet sizes. The rest of the paper details the derivation of this
result and its consequences. The solution of the variational

problem corresponding to the model of Section 2 is presented
in Section 4 leading to exact ‘‘semi-analytical’’ results for the
problem, valid for any particle size. In Section 5, the small
particle to the bubble size ratio limit is explored to provide
analytical expression for the distortion of the droplet surface
and the displacement of the particles on each side of the
droplet, resulting from the application of equal but opposite
forces F to the particles. In Section 6, using our force vs.
displacement graphs we consider the dissipation of the energy
that arises from the detachment of a particle from the interface.
Finally, we discuss the effect of line tension in Section 7.

2 Model

The geometry of our system is shown in Fig. 1. We consider a
droplet of incompressible fluid 1 immersed in fluid 2. Due to
surface tension between the two fluids, the droplet in equili-
brium is spherical with radius R, which is determined by the
volume V0 of the droplet given by

V0 ¼
4p
3
R3: (2)

In order to overcome the problem of having a net zero force
on the droplet–particle system we use two identical solid
particles of radius a adsorbed at the opposite ends of the
droplet. The equilibrium contact angle between the fluid inter-
face and the flat surface, y, is determined by Young’s equation

y ¼ arccos
g1p � g2p

g

� �
; (3)

where g1p and g2p are surface tensions of the surface of the
particles in contact with fluids 1 and 2, respectively. The
resulting system is axially symmetric. We take the denser
continuous fluid phase to be phase 2 here, with the fluid 1
then comprising the body of the droplet. As such, the contact
angle is then conventionally measured as the one considered
into the phase 2.

We apply opposite forces, F and�F, on both particles, acting
along the axis of symmetry of the system. Our aim is to
establish the positions of the centre of the particles, r1 and r2,
as the functions of the applied force of magnitude F. Under
applied force the system will remain symmetric, so that
r1 = �r2 � r, where r is the distance of the particle centre from
the centre of mass of the fluid droplet.

We can write the magnitude of the external force applied to
the particles as the derivative of the free energy of the system,
F, with respect to distance 2r between them:

F ¼ dF

dð2rÞ: (4)

Free energy of the system is determined by presence of the
interfaces and can be written as

F = gS12 + g1pS1p + g2pS2p, (5)

where the quantities S denote areas between different con-
stituents, indicated by subscripts 1, 2 and p, corresponding to

Fig. 1 The geometry of the system.
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fluids 1 and 2 and the particles, respectively. Similarly, the
subscript for each g indicates the interfacial tension between
the indicated phases. We neglect line tension for the moment.

Generally, the free energy of the system is the functional of
the shape of the droplet. The equilibrium shape of the droplet at
given particle positions can be obtained by minimising the free
energy of the system (5) with respect to possible droplet shape,
with the additional constraint of constant volume of the droplet,

V = V0, (6)

where V0 is given by eqn (2). This condition arises due to
incompressibility of the droplet fluid.

3 Displacement–force diagram in
small-particle limit

This section presents, without derivation, the key result of the
present work: the analytical expression for dependence between
the force F and the displacement of the particles Dr in the limit
of small ratio of particle to droplet sizes. It is given para-
metrically by the formulas

F(k) = pgam (7)

and

DrðkÞ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

� m
4

1þ 2 ln
ðkþ xÞa

4R

� �� �
; (8)

where

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2

4

s
; (9)

m ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

sin y� k cos y
	 


; (10)

and the parameter k changes between kmin and 1, where kmin is
the solution of transcendental equation

dDrðkÞ
dk

� �
k¼kmin

¼ 0; (11)

with Dr(k) being given by eqn (8).
In the case of 901 contact angle, the displacement can be

expressed explicitly as a function of the force:

Dr
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� F
2

r
� F

2pga
1

2
þ ln

a

8R
1� Fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� FÞ

p	 
h i� �
;

(12)

where

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F

pga

� �2
s

: (13)

The derivation of the above formulas and their con-
sequences is given in the rest of the paper. Fig. 2 demonstrates
the accuracy of these formulas in comparison with the full
numerical solution, described in subsection 4.4, at different values
of particle to droplet size ratios, as do Fig. 3, 5–9 and 11 further.

4 Free-energy analysis

In this section the free-energy analysis is performed for the
model described in Section 2. We obtain the exact expressions
for the shape and volume of the droplet, as well as the free
energy of the system as functions of three parameters which
characterise the size of the droplet, its deformation and the
radius of the contact circle. Following this we solve numerically
for the values of these parameters which minimise the free
energy of the system under the constraint of constant volume of
the droplet, given by eqn (6), and use the results to calculate the
detachment force and other properties of the system.

4.1 Droplet shape

Minimisation of the free energy of the system under the
constraint of fixed volume constitutes a variational problem
with variable end points. Different equivalent methods exist

Fig. 2 Dependence of force upon the position of the particles at y = 901.
Solid curves are calculated numerically and correspond to n = 0.1, 0.03,
0.01, 0.003, 0.001 (from left to right). Dashed curves correspond to the
small-particle limit, eqn (12).

Fig. 3 Dependence of the angle ac, defined by eqn (38) and depicted in
Fig. 1, upon the position of the particles at y = 901. Solid curves are
calculated numerically and correspond to n = 0.1, 0.03, 0.01, 0.003, 0.001
(from left to right). Dashed curves correspond to the small-particle limit,
eqn (69).
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for solving this class of variational problems, which are dis-
cussed, for example, by Bolza.59 We adopt the method in which
the variational problem is decomposed into two problems.60

First we consider the variations which leave the end points
fixed (which physically corresponds to pinned contact line).
After that, finding the extremal satisfying boundary conditions
reduces to an algebraic problem, which is simpler than consider-
ing from the beginning the full variation including the end points.

In accordance with the above, we first determine the class of
the shapes of the fluid droplet which minimise the contribution

to free energy due to the presence of the fluid interface only. This
contribution is proportional to the area of the fluid interface,
F12 = gS12, so the problem is equivalent to minimising the area
S12 at constant volume of the droplet. The result will depend on
the parameters which will be later determined by minimising
the total free energy of the system.

It is convenient in our study to describe the droplet shape by
the function z � z(r), where the cylindrical polar coordinates r
and z are depicted in Fig. 1. Henceforth we shall omit the
argument r for brevity when referring to z. The element of the
arc length corresponding to the increment dr is

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
dr; (14)

where prime denotes derivative with respect to r. The corres-
ponding elements of the surface area and the volume are
given by

dS = 2prdl (15)

Fig. 4 Shapes of the droplet surface at different positions of the particle,
calculated for n = 0.01 and y = 901. Dashed lines correspond to equilibrium
shape of the droplet. The top figure shows particle position which corre-
sponds to maximum force for which the particle still remains attached to
the interface.

Fig. 5 Dependence of the detachment force with n, at y = 901. Solid
curve is calculated numerically. Dashed curve corresponds to the small-
particle limit, eqn (70).

Fig. 6 Dependence of the particle position, corresponding to the point
where the maximum force occurs, with n at y = 901. Solid curve is
calculated numerically. Dashed curve corresponds to the small-particle
limit, eqn (71).

Fig. 7 Dependence of the Hookean constant defined by eqn (51) upon
n at y = 901. Solid curve is calculated numerically. Dashed curve corre-
sponds to the small-particle limit, eqn (72).
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and

dV = 2prz dr. (16)

The function to be minimised is

S ¼ S12 þ
2

r0
V: (17)

Here

S12 =
Ð

dS (18)

is the area of the fluid interface and

V =
Ð

dV (19)

is the volume of the droplet, and (2/r0) is Lagrange multiplier
associated with the fixed volume of the droplet. The function
(17) can be represented in the form

S =
Ð

L dr, (20)

with the integrand function given by

L ¼ 2pr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
þ 2z

r0

� �
: (21)

The corresponding Euler–Lagrange equation,

dL
dz
¼ @L
@z
� d

dr
@L

@z0
¼ 0; (22)

then becomes

rz00 þ 1þ z02
� �

z0 � 2r
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p� �
¼ 0: (23)

The solution to this equation is

z0 ¼ �
1

2
cr0

2 þ r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02r2 �

1

2
cr02 þ r2

� �2
s ; (24)

where c is integration constant. Due to the symmetric nature of
the problem, the condition z0 = �N gives the maximum and
minimum radii of the cross-section of the droplet:

rþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c
p

2

s
r0: (25)

r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2c
p

2

s
r0: (26)

To obtain the formula for the droplet shape, we integrate z0

to yield

z ¼
ðr
rþ

z0dr ¼
ðrþ
r

1

2
cr0

2 þ r2
� �

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ2 � r2
� �

r2 � r�2ð Þ
q (27)

The resulting shape is the so called unduloid58,61 described by
formula

z ¼ rþEðj; kÞ þ
cr0

2

2rþ
Fðj; kÞ; (28)

where F(j,k) and E(j,k) are incomplete elliptic integrals of first
and second kind, respectively, and

sinj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

2 � r2

rþ2 � r�2

s
: (29)

and

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�

2

rþ2

s
: (30)

In cases c 4 0 and c o 0 eqn (28) describes, respectively,
unduloids and nodoids, which are members of the family of
constant mean curvature surfaces.58,61 They correspond to the
detachment of the particles in the outward and inward direc-
tion with respect to droplet. We shall henceforth consider the
case when the particles detach in the outward direction (c 4 0).

Fig. 8 Plots of force vs. the position of the particles, for n = 0.01. Solid
curves are calculated numerically and correspond to y = 1501, 1201, 901,
601, 301 (from left to right). Dashed curves correspond to our analytical
expression for the small-particle limit, eqn (8) and (7). Note that the
equilibrium position of the particles does not generally correspond to
Dr = 0, except when y = 901.

Fig. 9 Dependence of the detachment force upon contact angle at
n = 0.01. Solid curve is calculated numerically. Dashed curve corresponds
to the small-particle limit, eqn (67).
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Note that at c = 0 the shape described by eqn (28) reduces to a
spherical one,

lim
c!0

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � r2

q
: (31)

4.2 Free energy

In this subsection we obtain the explicit formula for the free
energy of the system. For this, we need the expressions for the
contact areas between different constituent phases.

Due to the symmetry of the problem, the surface of the
droplet contacts the particles at circular lines. We denote their
radii as rc. Then the interfacial areas can be represented as

S1p ¼ 2 2pa a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � rc2

q� �� �
; (32)

S2p ¼ 2 2pa aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � rc2

q� �� �
; (33)

S12 ¼ 2

ðrþ
rc

2pr0r
2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ2 � r2
� �

r2 � r�2ð Þ
q

¼ 2 2prþ r0E jc; kð Þ½ �

(34)

with

sinjc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

2 � rc
2

rþ2 � r�2

s
: (35)

Note that in the case of a spherical droplet (c = 0) the surface
area of the fluid–fluid interface reduces to that for a
spherical zone:

lim
c!0

Sio ¼ 4pr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � rc2

q
: (36)

As a result, the free energy of the system, up to a constant
term, is

F ¼ 4pg rþr0E jc; kð Þ � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � rc2

q
cos y

� �
: (37)

4.3 Droplet volume

In this subsection we obtain the expression for the volume of
the droplet which corresponds to the shape described by
eqn (28). We shall impose the constraint of constant volume
of the droplet, given by eqn (6), when we come to minimise the
free energy of the system.

First we consider the case when the angle

ac ¼ arcsin
rc
a
; (38)

as depicted in Fig. 1, satisfies the condition

ac �
p
2
: (39)

In this case the volume of the droplet can be written as

V = Vrorc
+ Vr4rc

, (40)

where

Vro rc ¼ 2 2p
ðrc
0

rzdr
� �

(41)

and

Vr4rc ¼ 2 2p
ðrþ
rc

rzdr

 !
: (42)

In the integral (41), z is the position of the surface of the
particles:

z ¼ r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
: (43)

The integration yields

Vro rc ¼
4p
3

3

2
rc

2r� a3 � a2 � rc
2

� �3=2h i� �
: (44)

In the integral (41), z is the position of the fluid–fluid
interface. The integration yields

Vr4 rc ¼
4p
3

rþ rþ
2 þ r�

2 � 3

2
rc

2 þ 3

4
cr0

2

� �
E jc; kð Þ

�

� r�
2rþ
2
þ 3

4

cr0
2rc

2

rþ

� �
F jc; kð Þ

þ rc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ2 � rc2
� �

rc2 � r�2ð Þ
q �

:

(45)

Note, in the case of an undeformed droplet (c = 0) we have the
volume of relative complement of cylinder of radius rc in
sphere of radius r0 (spherical ring):

lim
c!0

Vr4rc ¼
4p
3

r0
2 � rc

2
� �3=2

: (46)

As a result, the volume of the droplet is given by formula

V ¼ 4p
3

1� c

4

	 

r0

2 � 3

2
rc

2

� �
rþE jc; kð Þ

�

� r�
2rþ
2
þ 3

4

cr0
2rc

2

rþ

� �
F jc; kð Þ

þ rc
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ2 � rc2
� �

rc2 � r�2ð Þ
q

þ 3

2
rc

2r� a3 � a2 � rc
2

� �3=2h i�
:

(47)

Finally, in the case ac 4 p/2, i.e. opposite situation to that
defined by eqn (39), the volume of two spherical rings with
sphere radius a and cylindrical hole radius rc,

4p
3

a2 � rc
2

� �3=2
; (48)

which corresponds to the volume at r 4 rc which lies inside
the particles and therefore should be subtracted from the total
volume, eqn (47), to yield the actual volume of the fluid droplet.
This is particularly important when the size of particles
becomes comparable to that of the droplet.
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4.4 Numerical solution

We have obtained the exact expressions for the shape, eqn (28),
and volume, eqn (47), of the droplet, as well as the free energy
of the system, eqn (37), as functions of the parameters r0, c, and
rc, which characterise size and deformation of the droplet and
radius of the contact circle, respectively. The actual values of
these parameters are those that minimise the free energy of the
system. The minimisation should be undertaken under two
conditions. First, the volume of incompressible fluid in the
droplet should be constant, i.e. eqn (6). Second, the interface
should contact particle at circle of radius rc, which can be cast
as equality of the value z(rc), calculated using eqn (28) for the
droplet shape, to the value of z calculated using eqn (43) for the
shape of the particle.

In order to calculate the force required to detach the particle
from the droplet we proceed as follows. We fix the value of
particle displacement Dr defined as

Dr = r � R (49)

and solve numerically for the values of the parameters r0, c, and
rc, which minimise free energy under the conditions given
above. Repeating this procedure for different values of Dr we
obtain free energy of the system, F, as a function of particle
displacement. Then we use numerical differentiation to calcu-
late the force as a function of particle position according to
eqn (4). In force-measuring experiments the maximum of this
function corresponds to the detachment force.

We start by considering the case of 90 degree contact angle.
Fig. 2 and 3 show the dependence of the force, calculated using
eqn (4), and the angle ac, defined by eqn (38), upon particle
displacement, at different values of the ratio of particle to
droplet sizes, denoted as

n � a

R
: (50)

The resulting shapes for the droplet surface at different values of
the particle displacement, calculated at n = 0.01, are shown at
Fig. 4. The force–displacement dependence shown in Fig. 2 is
similar to the experimental data for detachment of particles from
air bubbles.25,26,32 In the case of flat fluid interfaces, qualitatively a
similar behaviour is predicted theoretically43–46,48,50,52 and also
observed experimentally.44,46,47,52

Fig. 5–7 show the dependence upon n of the detachment
force F*, corresponding particle displacement Dr*, and the
Hookean (‘‘spring’’) constant k, defined as

k ¼ dF

dDr

� �
Dr¼0

: (51)

Note that the analytical formulas, derived in Section 5, in the
limit of small particle-to-droplet size ratio, for the dependence
of particle detachment position (Fig. 6) and Hookean constant
(Fig. 7) work well even for relatively larger particles.

Next we consider different contact angles. The variation of
the force with particle displacement, at different values of the
contact angle y, is shown in Fig. 8. Fig. 9 shows dependence of
the detachment force as a function of contact angle, and Fig. 10

displays the corresponding shapes of the droplet interface at
the particle position corresponding to the maximum force.

Hysteresis of the contact angle may significantly affect
the behaviour of the particles being detached from the inter-
face.27,37,47 Our model can still be applied in this case, if we
take y as the value of the receding contact angle.

5 Limit of small particles

In the most common cases the size of the particles is much
smaller than the size of the droplet. This section focuses on
investigating the limit of small particle to droplet size ratio.

5.1 General formulas

In the small-particle limit the ratio of particle and droplet sizes
n, defined by eqn (50) is a natural small parameter.

Since the radius of the contact circle cannot be larger than
the radius of the particles, rc o a, then this is always small
compared to droplet size, too,

rc { R. (52)

The parameter r0 is comparable with the size of the droplet,

r0 E R. (53)

The parameter c, which controls the deformation of the droplet,
is also small in this limit:

c { 1. (54)

Fig. 10 Distortion of the shape of the droplet surface at particle positions
corresponding to displacement where the maximum force occurs, for
different contact angles. Results are calculated for n = 0.01. Dashed lines
correspond to equilibrium shape of the droplet. Thin circles correspond to
equilibrium positions of the particles (i.e. when F = 0).
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This allows us to introduce the following set of dimensionless
quantities:

k � rc
a
; (55)

l � r0 � R

a
; (56)

m � c

n
; (57)

which in general are not small.
Let us choose k as an independent parameter and regard m,

l, as well as other quantities, as functions of k. Then we can
express the force given by eqn (4) as a function of k:

FðkÞ ¼ 1

2

@F=@kð Þ
@r=@kð Þ : (58)

In order to calculate the derivatives in eqn (58), we need to
express the free energy F and particle position r as functions of
k in small n limit. For this we require the expressions for the
parameters m and l as functions of k.

The numerical solutions described in Section 4 have demon-
strated that the actual contact angle at the surface of the particles
in the absence of line tension remains equal to contact angle at
flat surface, y, as given by Young’s equation, eqn (3), with accuracy
of the order 10�4. This can be seen in Fig. 12 where the top line is
horizontal. To express m in terms of k, we will use this result from
now on and fix the actual contact angle equal to y expressed as

y = arcsin k � arctan z0(rc) (59)

Substituting eqn (24) for z0 and expanding the result in powers
of n we obtain

m ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

sin y� k cos y
	 


þ oðnÞ: (60)

To express l in terms of k we also expand the volume given
by eqn (47) in powers n. Using the expansions of the elliptic

integrals given by eqn (91) and (92) (see Appendix), we obtain

V ¼ 4pR3

3
1þ 3 l� m

4

	 

n

h

þ 3

16
16l2 � 12lm� m2
� �

n2 þ o n2
� ��

:

(61)

The incompressibility condition, eqn (6), then yields

l ¼ m
4
þ 3m2

16
n þ o n1

� �
; (62)

Using the above expressions, we can write the free energy of
the system in the following form:

FðkÞ ¼ F0 � 2pa2g k2 þ m2

4

x
kþ x

þ ln
ðkþ xÞn

4

� ��

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

cos y
o
þ o n0
� �

;

(63)

where

F0 = 4pR2g (64)

is free energy of undeformed droplet without adsorbed parti-
cles, and x is defined by eqn (9).

In order to calculate force using eqn (58), we also need the
expression for the position of the particles, r, as a function of
the parameter k, too. Expressing r as

r ¼ z rcð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � rc2

q
: (65)

and expanding z(rc) given by eqn (28) in n, we obtain

rðkÞ ¼ Rþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

� m
4

1þ 2 ln
ðkþ xÞn

4

� �� �
þ o n0
� �

; (66)

which is equivalent to eqn (8). Now substituting eqn (63) and
(66) into eqn (58), we finally obtain eqn (7) for the force.

Formulas (7) and (8), together with (9) and (10), allow us to
calculate parametrically the dependence of the force F upon the
position of the particles r in the small-particle limit (see Fig. 8).
The maximum force in the small-particle limit,

Fig. 11 Dependence of the detachment energy upon the value of n for
the case with y = 901. Solid curve is calculated numerically. Dashed curve
corresponds to the small-particle limit, eqn (74). Dotted curve shows the
energy of adsorption for particle, included here for comparison.

Fig. 12 Dependence of actual contact angle upon particles’ positions
at n = 0.01, y = 901, and different values of dimensionless line tension
t/(ga) = 0, 0.1, 0.2, 0.3, 0.4, 0.5 (top to bottom).
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F* = pga(1 � cos y), (67)

is shown in Fig. 9. Note, the expression (67) coincides with the
formula obtained by Scheludko et al.41 for the case of flat fluid
interface.

In our model we neglect compressibility of the inner fluid.
Now we can demonstrate that this assumption is also valid in
the case of gaseous bubbles. The change in free energy of the
system due to the increase of the interfacial area, given by
eqn (63), is of order ga2. The corresponding change in pressure
is Bga2/R3, where V B R3 is the volume of the bubble. The inner
fluid can be considered incompressible if this change is small
compared to the Laplace pressure Bg/R. This yields the criterion
(a/R)2 { 1, which is well satisfied. Therefore, our formulas can
be used for compressible (e.g. air) bubbles as well.

5.2 Case of 90 degree contact angle

For right angle contact angle (y = 901) eqn (8) and (7) simplify
and the force and the position of the particles are given
parametrically in terms of k as follows:

F ¼ 2pgak
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

; (68)

r ¼ Rþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

1� k
1

2
þ ln

kð1þ kÞn
4

� �� �
: (69)

From these formulas the dependence Dr(F) can be obtained
explicitly as eqn (12). This variation is plotted in Fig. 2. The
maximum force

F* = pga (70)

occurs at position

r� ¼ R� a

2
ln

ffiffiffi
2
p
þ 1

� �
n

8
�

ffiffiffi
2
p
þ 1

2

" #
(71)

(see Fig. 6).
The Hookean constant defined by eqn (51) is given by

k ¼ 2pg
1

2
� ln

n
2

(72)

and is of the order of surface tension g (see Fig. 7). Numerical
constants apart, the form of eqn (72) is quite similar to that
reported by Pitois and Chateau for k, obtained for the case of a
flat interface in the limit of small Bond numbers.47 However, it
must be noted that the parameter n for such problems is
different to ours and there represents the ratio of the radius
of the particle to the capillary length, a/(g/rg)1/2.

6 Work of detachment

As the two spherical particles are pulled gently apart, an
increasing amount of energy is stored in the resulting distor-
tion of the droplet (or bubble) surface. This situation continues
until the displacement of the particles reaches a distance
whereupon they become detached from the droplet. As already
shown in Fig. 2, the position at which this happens is slightly

further away from the point where the generated restoring force
attains its maximum value. At this stage, the interface relaxes
back and the droplet returns to its original undisturbed spherical
form, thus leaving the particles in the dispersion medium at a
distance Ba away from the surface of the droplet. The process
occurs over a finite relaxation time, dictated by the viscosities of
the dispersed and the dispersion media. The localised flows of
the fluid in the droplet and in that of the surrounding liquid
close to the interfacially distorted region, taking place during this
relaxation time, involve the dissipation of some of the stored
interfacial energy. Typical stresses and strain rates involved in the
process are g/a and g/(Za), respectively, where for simplicity we
assume that the viscosity, Z, for the more viscous phase is much
higher than the other one. The rate of energy dissipation per unit
volume is then Bg2/(Za2), i.e. inversely proportional to the
viscosity. On the other hand, since the duration of the relaxation
time increases linearly with Z, it is expected that the overall
dissipated energy during the full process should not be depen-
dent on viscosity. The value of the energy dissipation, resulting
from dislodging of the particles from the droplet surface, can be
calculated by subtracting the stored energy in the distorted
droplet interface just prior to particle detachment, from that of
the particles that are fully displaced into the dispersed phase
residing away from the droplet. The latter is simply given by
eqn (1), while the former is the area under the appropriate force–
displacement curve, similar to those we displayed in Fig. 2 and 8,
integrated up to the point of detachment.

Fig. 11 shows the dependence of the work required to detach
the particles from the droplet on n, calculated as

W = Fdetachment � Fequilibrium. (73)

This work is compared with the adsorption energy, which is
different from that given by eqn (1) for flat interfaces due to
deformation of the droplet in equilibrium.

As n decreases, the dependence of the force upon the
displacement of the particles becomes more linear. This allows
calculating the detachment work, in small particle to droplet
size ratio limit as the area of the triangle on the displacement–
force diagram. Using eqn (70) and (71) we can write for the case
of the 901 contact angle:

W ¼ �p
2
ga2 ln

ffiffiffi
2
p
þ 1

� �
n

8
�

ffiffiffi
2
p
� 1

2

" #
: (74)

This is plotted in Fig. 11, normalised by 2pga2. The dashed line
in the figure is for our approximate equation, eqn (74), while
the solid line represents the exact results obtained using the
numerical analysis of Section 4.4. For values n o 0.03, the two
curves are in perfect agreement, though they began to deviate
at higher size ratios. The adsorption energy of the particles is
also included in the figure, shown by the dotted line, for
comparison. As expected, this is simply 2pga2 for the pair of
particles with a contact angle of 901, when n is small. It
marginally deviates from 2pga2 at higher size ratios, as the
effects of the finite curvature of the interface become more
prominent. Note that eqn (74) provides the dissipated energy

Soft Matter Paper



4262 | Soft Matter, 2015, 11, 4251--4265 This journal is©The Royal Society of Chemistry 2015

for the pair of particles and should be divided by a factor of two,
if needed for a single particle. It is seen from Fig. 11, that the
dissipated energy becomes an increasingly more significant
component of the work done during the detachment of the
particles, in comparison to the adsorption energy, as n - 0.
The results in Fig. 11 indicate that for small particles, the
energy barrier to adsorption can be significantly larger than
that simply taken to be equal to the adsorption energy. The
detachment work of particles from the interfaces had also been
considered by Pitois and Chateau47 in the limit of small but finite
Bond numbers (and therefore also flat interfaces). Their conclusions
for such cases are broadly in accord with those found here.

Dissipation in moving the particle away from the surface is
rate dependent but we are considering it post detachment only,
assuming that up to the point of detachment the particle was
moved sufficiently slowly so as to maintain the equilibrium
liquid profile. Although in this case the exact energy dissipation
during the detachment of the particle does not require any
detailed knowledge of the of the actual relaxation dynamics, it
maybe interesting to model this using LB or even traditional
CFD methods. It would also be useful then to study the
phenomenon using a high speed camera and compare the data
with the theoretical results. To do so, it may be more suitable to
use moderately viscous fluids, either for the droplet or the
dispersion medium. This can easily be tailored to the appro-
priate value by adding a suitable amount of rheology modifiers
or thickening agents to either of the two fluids, slowing down
the interfacial relaxation kinetics to ranges that can easily be
captured by the camera.

7 Effect of line tension

Line tension can affect the behaviour of the particles adsorbed
at fluids interfaces if the particles are small enough,41,62–66

a 	 t
g
: (75)

Both positive and negative values of line tension t were reported
with magnitudes spanning a range 10�12–10�5 N.63–65 Rough-
ness of the contact line can also manifest itself as the effective
line tension.67

To account for line tension in our model, we add a contribu-
tion to the free energy of the system, eqn (37), equal to the length
of the contact circles of both particles multiplied by line tension:

Ft = 4prct. (76)

Then we can minimise numerically the free energy of the
system with the contribution of line tension given by eqn (76)
using the method described in subsection 4.4.

Presence of line tension modifies the contact angle at the
surface of the particles. Moreover, it makes it dependent upon
the displacement of the particles, as is shown in Fig. 12. This results
in changes in the manner in which the force varies with displace-
ment (Fig. 13) and in the value of the detachment force (Fig. 14).
As expected,66 at large positive values of line tension the particles
do not stay at the surface even in absence of any external force.

8 Conclusion

We have considered two spherical solid particles adsorbed on
the surface of, and located at the opposite poles of an incom-
pressible fluid droplet. We have calculated the deformation of
the droplet and subsequent detachment of the particles under
the influence of two opposite external forces applied to the
particles at each end, as the magnitude of the forces is
increased. The free-energy analysis have been used to calculate
the force–displacement curves for restoring forces that are
generated as a result of the droplet deformation and displace-
ment of the particles relative to each other.

In the case of the particles being small compared to the
droplet, the problem has been solved analytically. The force, given
by eqn (7), varies almost in a linear fashion with the displacement
of the particle, eqn (8), almost up to the point where the particle
becomes detached from the droplet. The maximum force F*,
given by eqn (67), depends upon the size of the particles a, the
value of the surface tension g, and the equilibrium contact angle y
in a way similar to that for a flat fluid interface. However, the

Fig. 13 Dependence of force on position of particles for cases where
n = 0.01 and y = 901. Results are for different values of dimensionless line
tension t/(ga) = 0, 0.1, 0.2, 0.3, 0.4, 0.5 (from top to bottom).

Fig. 14 Dependence of detachment force upon line tension at n = 0.01
and different values of the contact angle.
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dependence of the force upon the displacement of the particles is
sensitive to the ratio of particle and droplet radii n.

In the case of arbitrary ratio of particle and droplet radii, we have
solved the problem ‘‘semi-analytically’’. These ‘‘exact’’ results agree
with the analytical solution for small particles. At larger particle sizes
the force decreases compared to the small-particle limit predictions,
as shown in Fig. 2 and 5. The effect of line tension becomes
noticeable for particles of very small size given by eqn (75).

The results of this work can be extended in several different
directions. The series expansion in n, derived in Section 5, can
be extended by considering higher-order terms. This should
result in better description of large particles. In particular,
extended series should be able to describe the dependence of
the detachment force upon n, Fig. 5. However, the formulas
derived in Section 5 already have a good accuracy for the typical
size ratios. For the dependence of particle detachment position
(Fig. 6) as well as Hookean constant (Fig. 7) these formulas
seem to work well even for larger particles.

Similar approach can be used to extend the results to
the case of pinned contact line68 and to particle shapes other than
spherical. The work can be also extended to the case of surfactant-
covered droplets by using Helfrich surface free energy.69 The effect
of adsorbed surfactant has been investigated experimentally by
Spyridopoulos and Simons.28 We expect that in such cases the
global rather than local deformations of the droplet to play the
main role due to curvature contribution to the free energy.

Appendix
Expansion of elliptic integrals

In this Appendix the series expansions of incomplete elliptic
integrals F(jc,k) and E(jc,k) are derived for the small-particle
limit described in Section 5.

In this limit the arguments of the elliptic integrals approach
jc - p/2 and k - 1. Van de Vel70 derived the series expansions of
elliptic integrals valid in this double limit, which are summarised
below.

The expansions are:

KðkÞ � Fðj; kÞ ¼ 2

p
K k0ð Þ sinh�1 1

k0 tanj

� �

� 1þ k02 tan2 j
� �1=2

cot2 j


 c0
0 � 2

3
c1
0
cot2 jþ 2 � 4

3 � 5c2
0
cot4 j� . . .

� �
;

(77)

EðkÞ � Eðj; kÞ ¼ 2

p
K k0ð Þ � E k0ð Þ½ � sinh�1 1

k0 tanj

� �

þ 1� k2 sin2 j
� �1=2

cotj

� 1þ k02 tan2 j
� �1=2

cot2 j


 d0
0 � 2

3
d1
0
cot2 jþ 2 � 4

3 � 5d2
0
cot4 j� . . .

� �
:

(78)

In these formulas

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

; (79)

cn
0 ¼ an

0

k02nþ2
¼
X1
i¼nþ1

�1
2
i

 !2

k02i�2n�2; (80)

dn
0 ¼ bn

0

k02nþ2
¼
X1
i¼nþ1

�1
2
i

 !2
2i

2i � 1
k02i�2n�2; (81)
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0 ¼

X1
i¼nþ1

�1
2
i

 !2

k02i; (82)

a0
0 ¼ 2

p
K k0ð Þ � 1; (83)
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0 ¼

X1
i¼nþ1

�1
2
i

 !2
2i

2i � 1
k02i; (84)

b0
0 ¼ 2

p
K k0ð Þ � E k0ð Þ½ �: (85)

and
n
k

� �
are binomial coefficients.

These formulas contain complete elliptic integrals of first

and second kind, KðkÞ ¼ F
p
2
; k

	 

and EðkÞ ¼ E

p
2
; k

	 

. For

|k| o 1, they can be represented in terms of Gauss hyper-
geometric function 2F1(a,b;c;z) as follows:71

KðkÞ ¼ p
2
2F1

1

2
;
1

2
; 1; k2

� �
; (86)

EðkÞ ¼ p
2
2F1 �

1

2
;
1

2
; 1; k2

� �
: (87)

Their asymptotic behaviour near the singularity at k = 1 is71

KðkÞ ¼
X1
i¼0

1

2

� �
i

i!
k0 i

2
664

3
775
2

ln
1

k0

� �
þ dðiÞ

� �
; (88)

EðkÞ ¼ 1þ 1

2

X1
i¼0

1

2

� �
i

3

2

� �
i

ð2Þi i!
k02iþ2


 ln
1

k0

� �
þ dðiÞ � 1

ð2i þ 1Þð2i þ 2Þ

� �
;

(89)

where (x)n is Pochhammer symbol, and

dðxÞ ¼ cð1þ xÞ � c
1

2
þ x

� �
; (90)

where c(x) is digamma function.
Substituting the expressions (35) and (30) for jc and k in

eqn (77) and (78) we obtain the following formulas for the case
of small n:

F jc; kð Þ ¼ � ln
kþ xð Þn

4
þ o n0
� �

(91)
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and

E jc; kð Þ ¼ 1� k2

2
þ m2

16
2 ln
ðkþ xÞn

4
� k� x
kþ x

� �� �
n2 þ o n2

� �
:

(92)
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