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Scattering of Light on Surfactant-Laden
Liquid-Liquid Crystal Interface

S. V. LISHCHUK

Materials and Engineering Research Institute, Sheffield Hallam University,
Sheffield, UK

The spectrum of surface quasi-elastic light scattering (SQELS) on a surfactant-
laden interface between nematic liquid crystal and isotropic fluid is calculated for
the case when the surfactant film induces homeotropic anchoring of the nematic
director. The result can be used for determination of the surface tension, compres-
sional modulus, and a combination of the surface viscosity coefficients from the
experimental SQELS data.

Keywords Nematic-isotropic interface; SQELS; Surface waves; Surfactant;
Thermal fluctuations

Introduction

Currently, there is a growing interest in the study of surfactant films adsorbed at
interfaces between nematic and isotropic fluids. Surfactant-laden liquid-liquid crys-
tal interfaces demonstrate interesting phase behavior (Price and Schwartz, 2007;
Gupta et al., 2008), anchoring (Brake and Abbott, 2002; Brake et al., 2003;
Lockwood et al., 2005; Kadivar et al., 2007), and wetting (Bahr, 2006) properties.
Surfactants play an important role in the formation and stability of liquid-crystal
emulsions (Kim et al., 1998; Park and Lee, 1999; Yamamoto and Tanaka, 2001;
Caggioni et al., 2005). Nematic-surfactant-isotropic interfaces are also promising
candidates for use in biosensing due to the possibility of synthesizing surfactant
molecules able to specifically bind to biomolecules such as proteins (Clare and
Abbott, 2005; Lockwood and Abbott, 2005) or DNA (Xu et al., 2005). In view of
potential applications, it is important to develop techniques that allow accurate
determination of the properties of such systems.

A powerful noninvasive experimental technique for studying viscoelastic
properties of fluid-fluid interfaces is surface quasi-elastic light scattering (SQELS)
(Langevin, 1992). It relies on the fact that the free surface of a liquid is not perfectly
planar because of thermal fluctuations. The temporal evolution of surface waves is
governed by surface tension and the viscoelastic properties of the liquid surface
and bulk liquid (Kramer, 1971; Kats and Lebedev, 1988; Earnshaw, 1996; Buzza,
2002). The analysis of the data obtained in SQELS experiments provides infor-
mation on the values of the surface tension and bulk and surface viscoelastic
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coefficients of surfactant films on fluid interfaces (Milling et al., 2001; Cicuta and
Hopkinson, 2004; Rojas et al., 2005; Kim et al., 2006).

The theoretical description of surface waves at interfaces between nematic and
isotropic liquids was first given by Langevin and Bouchiat (1972b) and successfully
applied to investigate the properties of nematic-isotropic interfaces by surface light
scattering (Langevin, 1972, 1975; Langevin and Bouchiat, 1972a, 1973; McQueen,
1973; McQueen and Singhal, 1974; Shih et al., 1983). Since then, several advances
have been made in the study of capillary waves at nematic-isotropic interfaces
(Parsons and Hayes, 1974; Hayes, 1975; Popa-Nita and Sluckin, 2002; Popa-Nita
and Oswald, 2003; Popa-Nita et al., 2005; Elgeti and Schmid, 2005) that elucidate
the role of the anisotropic structure of liquid crystal for the spectrum of surface
waves.

The present article is devoted to the study of the power spectrum of light
scattered from the surfactant film between nematic and isotropic fluids. The surfac-
tant film at the nematic-isotropic interface reduces surface tension (Kim et al., 2004)
and induces anchoring of the nematic liquid (Brake and Abbott, 2002; Brake et al.,
2003; Lockwood et al., 2005; Kadivar et al., 2007). The presence of the adjacent
nematic phase results in the anisotropy of the surface viscoelastic coefficients
(Rey, 2000). An additional effect of the surfactant is related to the nonzero curvature
energy of the interface (Helfrich, 1973; Rey, 2006a).

The influence of the above effects upon the surface waves at a surfactant-laden
nematic-isotropic interface was investigated before (Lishchuk, 2007) for the case
when the surfactant film is in the isotropic fluid state and induces homeotropic
anchoring of the nematic director. This case corresponds to a wide range of experi-
mental conditions and is especially simple to investigate theoretically due to the sym-
metry of the problem. It was shown that there are four surface modes, which
correspond to capillary, compression, in-plane shear, and director relaxation modes.

In the present study the model developed in the previous work (Lishchuk, 2007)
is used to derive the power spectrum of surface light scattering. We shall see that in
the range of wave vector and frequencies used in SQELS experiments the expression
for power spectrum can be considerably simplified. As a result, it depends upon only
three material parameters of the interface (assuming the bulk properties of the fluids
known): the interfacial tension, compressional modulus, and sum of interfacial shear
and dilatational viscosities. The fitting of the model predictions to the experimental
SQELS power spectra should make it possible to determine these quantities for
surfactant-laden nematic interfaces.

The article is organized as follows. The general expression of the SQELS power
spectrum in terms of the force-displacement linear response function is given next.
Then there is a summary of the model of the surfactant-laden nematic interface used
in the present article. The explicit expression for the force-displacement linear
response function is derived in the following section and used to investigate the
dependence of the SQELS power spectrum upon material parameters of the
interface.

Surface Light Scattering

A detailed overview of the surface light scattering technique is given in a book by
Langevin (1992). In a typical SQELS experiment the incident laser beam of wave-
length k is sent to the fluid surface at the angle h0 with the surface normal. Due
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to thermal fluctuations, the surface of the fluid is not perfectly planar, and surface
waves of different wavelengths are excited. As a result, part of the beam is scattered
in directions different from specular reflection. The intensity of the scattered light is
measured as a function of the deviation dh of the angle from the specular reflection.

Let unperturbed fluid surface lie in the X -Y plane. The measured intensity of a
scattered light is proportional to the power spectrum hjuzðq;xÞj2i of the surface ver-
tical displacement uzðq;xÞ (i.e., amplitude of the surface waves in the Z direction
normal to the surface). Here angular brackets denote thermal average, x is the
frequency of a surface wave, and q is the wavenumber, which in the limit of small
scattering angles is related to dh by

q ¼ 2p cos h0

k
dh ð1Þ

Typical values of q investigated in SQELS experiment lie in the interval
100�2000 cm�1.

In the linear response regime the surface displacement uðq;xÞ can be cast as

uiðq;xÞ ¼ vijðq;xÞF ext
j ðq;xÞ ð2Þ

where Fextðq;xÞ is the external force (per unit area) applied to the interface, and
vijðq;xÞ is the force-displacement linear response function. The power spectrum
hjuzðq;xÞj2i can be found using the fluctuation-dissipation theorem, which in the
classical form reads

hjuzðq;xÞj2i ¼ �
2kBT

x
v00zzðq;xÞ ð3Þ

Here double prime denotes the imaginary part.
In this study we shall derive the explicit expression for vijðq;xÞ for the

surfactant-laden interface between the nematic liquid crystal and the isotropic fluid,
using a model equivalent to one used in the previous work (Lishchuk, 2007) and
summarized in the following section.

Model

In this section we summarize the macroscopic model of the surfactant-laden interface
between an isotropic liquid and a nematic liquid crystal (Lishchuk, 2007) used in the
present article and present the governing equations.

We assume that the temperature of the system and surface concentration of a
surfactant are within the range in which the surfactant film is in the most symmetric
phase (isotropic two-dimensional fluid). We also assume that the system is far from
any phase transitions both in the surfactant film and in the bulk nematic phase. The
surfactant layer is assumed to be insoluble in both bulk fluids, Newtonian, and
macroscopically infinitely thin. We also assume heat diffusion to be sufficiently fast
so that the system is in thermal equilibrium.

The surface dynamics of the compressible surfactant-laden interface between
nematic and isotropic fluids is described using the theory of a compressible interface
between nematic liquid crystals and isotropic viscous fluids (Rey, 2000) and the
model for curved surfactant-laden liquid-liquid crystal interfaces (Rey, 2006a). Both
bulk fluids (isotropic and nematic) are assumed incompressible. The orientational
order in the nematic liquid crystal is described by the unit director vector n, and
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the dynamics is described in terms of linearized Eriksen-Leslie theory (De Gennes
and Prost, 1993; Landau and Lifshitz, 1986).

In order to determine the linear response function vij using Equation (2), we
write the interfacial force balance equation in the form

FS þ FN þ FI þ Fext ¼ 0 ð4Þ

where FS ¼ rs � RS is the force per unit area exerted by the interfacial stress RS,
FI ¼ RI js � k is the force per unit area exerted by the isotropic fluid, FN ¼ RN js � k
is the force per unit area exerted by the nematic liquid crystal, k is the unit vector
normal to the interface and directed into the isotropic fluid, and the subscript s indi-
cates that the bulk stress fields in the isotropic fluid, RI , and in the nematic, RN , are
evaluated at the interface. We also need the interfacial torque balance equation

TS þ TN ¼ 0 ð5Þ

where TS is the interfacial torque arising due to surface interactions, and TN is the
torque exerted upon the interface by the adjacent nematic liquid crystal.

The surface stress tensor RS is represented as a sum of corresponding nondissi-
pative (elastic) contribution RSe and dissipative (viscous) contribution RSv:

RS ¼ RSe þ RSv ð6Þ

We describe the elastic surface stress tensor using the expression proposed by Rey
(2006a) for the surfactant-laden nematic-isotropic interfaces:

RSe ¼ rIs þ hSe
k k�M � b ð7Þ

Here

r ¼ � qS
� �2@FS

@qS

� �
k;b

ð8Þ

is the interfacial tension,

hSe
k ¼ � qSIs �

@F S

@k

� �
qS ;b

� Is � rs �Mð Þ ð9Þ

is the tangential surface molecular field,

M ¼ qS @FS

@b

� �
qS ;k

ð10Þ

is the bending moment tensor, FS is the Helmholtz free energy of the interface per
unit mass, qS is the surface mass density, Is ¼ I� kk is the surface projector (I is the
unit tensor), rs ¼ Is � r is the surface gradient operator, and b ¼ �rsk is the second
fundamental tensor of the interface.

We describe the viscous surface stress tensor using the expression proposed by
Rey (2000) for the nematic-isotropic interfaces:

RSv ¼ as
1SS : nknknknk þ as

2nkN
S þ as

3NSnk þ as
4SS

þ as
5nknk � SS þ as

6SS � nknk þ as
7nknk nk �NS

� �
þ bs

1Is Is : SS
� �

þ bs
2 nknk Is : SS

� �
þ Is nknk : SS

� �� � ð11Þ
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where SS ¼ 1
2 ½rsIs � vS þ Is � ðrsv

SÞT� is the surface rate-of-deformation tensor
(ð� � �ÞT denotes the transposed tensor), is the surface vorticity tensor, vS is surface
velocity, nk ¼ Is � n is the component of the nematic director n tangential to the
surface,

NS ¼ Is �
dnk
dt
þ AS � nk ð12Þ

is its surface Jaumann (corrotational) derivative, AS ¼ 1
2 ½rsIs � vS � Is � ðrsv

SÞT� and
aS

1�7; b
S
1�2 are nine independent surface viscosity coefficients.

Generally, there are additional dissipative contributions to the stress tensor,
related to bending and torsion (Rey, 2006b). It becomes small for small displace-
ments of the interface from equilibrium (Gurkov and Kralchevsky, 1990), and there-
fore will be neglected in this study.

The surface torque vector TS is also represented as a sum of corresponding
nondissipative (elastic) contribution TSe and dissipative (viscous) contribution TSv:

TS ¼ TSe þ TSv ð13Þ

The elastic contribution to surface torque is

TSe ¼ �e : RSe þr � Cs ð14Þ

where Cs ¼ �M � es is the surface couple stress, e is the Levi-Civita tensor, and
es ¼ �Is � k is the surface alternator tensor. The surface viscous torque is given by

TSv ¼ �n� hSv ð15Þ

where the surface viscous molecular field hSv is

hSv ¼ aS
3 þ aS

2

� �
SS � nk þ

1

2
Is : SS
� �

nk

� �

þ aS
3 � aS

2

� �
NS þ aS

6 nk nknk : SS
� �

þ cS
1?kk � dn?

dt

ð16Þ

cS
1? is the normal rotational viscosity.

The surface free energy F S, which enters Equations (8)–(10), depends upon the
orientation and curvature of the interface. We expand the free energy in powers of
small deviations of the unit normal vector k and on the second fundamental tensor b
from equilibrium, and represent the truncated series as a sum of three contributions:

FS qS; k;b
� �

¼ F s
t qS
� �

þF s
aðkÞ þ F s

cðbÞ ð17Þ

Explicitly, the surface tension contribution has the form

qSFS
t ¼ �rr ð18Þ

where �rr is the surface tension of the unperturbed interface. The anchoring contri-
bution can be written as

qSFS
a ¼

1

2
W dn2

k þ dn2
?

	 

ð19Þ

where W determines the zenithal anchoring strength, dnk ¼ nk � n0k
�� �� and

dn? ¼ n? � n0?j j are the deviations of the tangential ðnk ¼ Is � nÞ and normal

858 S. V. Lishchuk
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ðn? ¼ n� nkÞ components of the director from the corresponding equilibrium
values n0k and n0?. The curvature contribution to the surface free energy density,
F S

c , becomes negligible at wavenumbers q that satisfy the condition (Buzza, 2002;
Lishchuk, 2007)

q <<
ffiffiffiffiffiffiffiffi
r=j

p
ð20Þ

The typical value of the bending rigidity j for surfactant films is of the order 10�21 J
(Marsh, 2006), so the inequality (20) is well satisfied for the wavenumbers used in
typical surface light scattering experiments. For this reason, the curvature contri-
bution FS

c will be henceforth neglected, and the surface free energy density takes
the form

qSF S ¼ �rrþ 1

2
W dn2

k þ dn2
?

	 

ð21Þ

The continuity equation for the insoluble surfactant reads

dn
dt
þ nrs � vS ¼ 0 ð22Þ

where n is the surfactant concentration, vS ¼ du=dt is the surface velocity, and u is
the surface displacement. For small deviation dn ¼ n � n0 of the surfactant concen-
tration from its equilibrium value n0, the dependence of the parameters characteriz-
ing the interface (surface tension �rr, anchoring strength W , and surface viscosities aS

i ,
bS

i ) upon n can be cast, using Equation (22), in the following form (Buzza, 2002;
Lishchuk, 2007):

rðnÞ ¼ r0 þ E0rs � u ð23Þ

WðnÞ ¼W0 þW1rs � u ð24Þ

In these formulas r0 ¼ �rr n0ð Þ and W0 ¼W n0ð Þ are, correspondingly, the interfacial
tension and the anchoring strength of the unperturbed interface, E0 ¼ �n0@�rr=@n is
the static compressional modulus, and W1 ¼ �n0@W=@n is the coefficient in the
first-order term of the expansion of anchoring strength in powers of rs � uð Þ. There
are similar expansions for surface viscosities aS

I , bS
I .

Power Spectrum

In this section the model described above is used to derive the explicit form of the
force balance equation (4).

We choose a coordinate system in such a way that the unperturbed interface lies
at a plane z ¼ 0, the half-space z < 0 is occupied by the nematic liquid crystal, and
the half-space z > 0 is filled by the isotropic liquid. We shall consider a surface wave
with frequency x and wave vector q ¼ ðq; 0; 0Þ propagating along x axis, and write
the force balance equation using a linearized form of the hydrodynamic equations.
We consider the case where the nematic director is normal to the interface, and
represent the equilibrium director in the form

n0 ¼ ð0; 0; 1Þ ð25Þ

Scattering of Light on Surfactant-Laden Interface 859
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In order to linearize the hydrodynamic equations, we write pressure p ¼ pðr; tÞ and
the nematic director n ¼ nðr; tÞ, where r ¼ ðx; y; zÞ is the position in space, t is time,
in the form

p ¼ p0 þ dp ð26Þ
n ¼ n0 þ dn ð27Þ

where dp and dn are the deviations of pressure and director from their equilibrium
values p0 and n0, correspondingly. For small deviations from the equilibrium, we
shall use the hydrodynamic equations linearized in v, dp, and dn. We shall assume
these quantities to be independent of the coordinate y (@y � @=@y ¼ 0), and to vanish
at z! �1.

Substituting the interfacial free energy density (21) into Equations (8)–(10), we
find the following expressions for the surface tension:

r ¼ �rrþW

2
dn2
k ð28Þ

tangential surface elastic molecular field:

hSe
k ¼Wdnk ð29Þ

and bending moment tensor:

M ¼ 0 ð30Þ

The x and z components of the interfacial force FS reduce, in linear approximation,
to the following expressions:

FS
x ¼ E0@

2
xux þ ðgs þ fsÞ @2

xvS
x ð31Þ

FS
z ¼ r0@

2
xuz þW0@x ðdnx þ @xuzÞ ð32Þ

Here

gs ¼
aS

4

2
ð33Þ

is interfacial shear viscosity, and

fs ¼
aS

4

2
þ bS

1 ð34Þ

is dilatational viscosity.
The x component of the surface torque balance equation can be written as

W0 þ cS
1k
@

@t

� �
ðdnx þ @xuzÞ ¼ K3@zdnS

x ð35Þ

The right-hand side of this equation can be neglected if s � K3q=W0 << 1. Substitut-
ing typical values K3 � 10�12 N, W0 � 10�2 J=m2, and q � 104 m�1, we obtain
s � 10�6. The smallness of this value allows us to write dnx þ @xuz ¼ 0 and use it
to write Equation (32) as

FS
z ¼ r0@

2
xuz ð36Þ

860 S. V. Lishchuk
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As a result, there is no dependence upon the anchoring strength, and the
interfacial force (Equations (31) and (35)) has the same form as in the case of
isotropic fluids.

To write the explicit form of the force balance equation (4), we need to add
forces FN and FI , exerted upon the interface by adjacent nematic and isotropic fluids.
These are derived in Appendix A. Introducing Fourier transforms in the x coordi-
nate and in time as

vðr; tÞ ¼ 1

2p2

Z 1
�1

dq

Z 1
�1

dxeixt�iqx~vv ðq; z;xÞ ð37Þ

dpðr; tÞ ¼ 1

2p2

Z 1
�1

dq

Z 1
�1

dxeixt�iqx~pp ðq; z;xÞ ð38Þ

and performing Fourier transform of the force balance equation, we obtain balance
equations for the force components in the form

~FF ext
x ¼ E�0q2~uuS

x þ gðmI þ qÞ~vvS
x � igðmI � qÞ~vvS

z

� in3

q

X2

i¼1

ðmN
i Þ

2 þ q2
h i

CN
i

ð39Þ

~FF ext
z ¼ r0q2~nnS

z ��2igq~nnS
x þ

ixqI

q

iq~uuS
x þm1~uuS

z

m1 � q

�
X2

i¼1

Ai � 2n1mN
i

� �
CN

i

ð40Þ

where

E�0 ¼ E0 þ ix ðgs þ fsÞ ð41Þ

is the complex compressional modulus, and the quantities mI , mN
i , CN

i , and Ai are
defined in Appendix A. Note that in the considered case of homeotropic anchoring
the x and z components of the force balance equations are decoupled from the y
component.

In fact, Equations (38)—(40) constitute the inverse of Equation (2):

~FF ext
i ¼ ðv�1Þij~uuj

ð42Þ

where ~uui ¼ ~vvi=ix, and the elements of the inverse linear response matrix are:

ðv�1Þxx ¼ E�0q2 þ igxðmI þ qÞ þ in3x ðmN
1 þmN

2 Þ

ðv�1Þxz ¼ �ðv�1Þzx ¼ gxðmI � qÞ � n3x
mN

1 mN
2

q
� q

� �

ðv�1Þzz ¼ r0q2 þ igx
mIðmI þ qÞ

q
þ in3x

mN
1 mN

2 mN
1 þmN

2

� �
q2

ð43Þ

To calculate the power spectrum of the vertical displacement of the interface given
by Equation (3), we need the component vzzðq;xÞ of the force-displacement linear
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response function, which is given in terms of ðv�1Þij by

vzzðq;xÞ ¼
ðv�1Þxx

ðv�1Þxxðv�1Þzz � ðv�1Þxzðv�1Þzx

ð44Þ

Equation (3) together with Equations (43) and (44) can be directly used to cal-
culate the power spectrum of the vertical displacement of the interface

��uzðq;xÞ
��2D E

.
The fitting of the experimental spectrum by Equation (3) should allow determination
of three surface viscoelastic parameters: the surface tension (r0), compressional
modulus (E0), and a sum of surface shear and dilatational viscosities (gs þ fs), pro-
vided densities and viscosities of bulk isotropic liquid and nematic liquid crystal
are known.

We shall demonstrate the behavior of the spectrum by calculating it numerically
using typical values of the material parameters. For the nematic liquid crystal we use
the following parameters of p-azoxyanisole (PAA) at 122�C: the density
qN ¼ 1168 kg/m3 (Hoyer and Nolle, 1956) and the viscosities n1 ¼ 3:2� 10�3 kg/
(m � s), n2 ¼ 3:4� 10�3 kg(m � s); and n3¼ 2:4 �10�3 kg/(m � s) (Kemp and Letcher,
1971). We assume the density qI of the isotropic fluid to be negligible, which is true
for the nematic-air interfaces. We adopt the value of the surface tension of PAA
measured without surfactant film r0 ¼ 0:050 Nm (McQueen and Singhal, 1974).
For surface viscoelastic coefficients we use the following typical values: E0 ¼ 10�2

N/m, gs ¼ fs ¼ 10�7 kg/s.
The power spectrum of surface vertical displacement calculated with these para-

meters for the typical wavenumber q¼ 400 cm�1 is shown in Figure 1. Figure 2
presents the q-dependence of the maximum position (xmax) and half-width (C1=2)
of the peak, normalized by the quantity

xc ¼

ffiffiffiffiffiffiffiffiffi
r0q3

qN

s
ð45Þ

Figure 1. Power spectrum of vertical displacement of surfactant-laden nematic interface for
q¼ 400 cm�1, calculated with the help of Equations (3), (44), and (43). Material parameters
are given in the text.
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which corresponds to the frequency of the capillary mode in the absence of
dissipation. Qualitatively, the behavior of the spectrum is similar to the simpler case
of isotropic fluids (Langevin, 1992). However, quantitative details of the spectrum
depend upon the surface tension and viscosities of the interface, as demonstrated
in Figure 3. This should allow determination of the surface tension, compressional
modulus, and a sum of the isotropic surface viscosity coefficients by fitting experi-
mental SQELS data by Equations (3), (43), and (44).

Figure 2. Dependence of maximum position xmax (solid line) and half-width C1=2 (dashed line)
of the peak in the power spectrum of surface vertical displacement upon wavenumber q. The
quantity xc is defined by Equation (45).

Figure 3. Dependence of the power spectrum of vertical displacement for q¼ 400 cm�1 upon
material parameters of the interface. Solid line corresponds to the values of parameters given
in the text, in particular E0 ¼ 10�2 N=m, gs ¼ fs ¼ 10�7 kg=s. Dashed line corresponds to
E0 ¼ 2� 10�2 N=m, dotted line corresponds to gs ¼ fs ¼ 2� 10�7 kg/s.
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Conclusion

We have derived the expressions for the spectrum of surface quasi-elastic light
scattering on a surfactant-laden interface between nematic liquid crystal and iso-
tropic fluid for the case when the surfactant film is in the fluid state and induces
homeotropic anchoring of the nematic director. The symmetry of this case allows
considerable simplification of the resulting equations. The spectrum depends only
upon three material parameters of the interface: surface tension coefficient, compres-
sional modulus, and a sum of surface shear and dilatational viscosity coefficients.
The obtained formulas can be used for determination of these quantities by fitting
the experimental SQELS data.

The case described in the present study is accessible in wide range of the system
states and may provide a fruitful route to experimental determination of some of the
properties of the surfactant-laden interface between nematic liquid crystal and iso-
tropic fluid. The generalization of the result to the case of tilted anchoring is straight-
forward. However, the expression for power spectrum becomes much more
complicated and is dependent upon the larger set of parameters describing the inter-
face. For example, even in the case in which the equilibrium nematic director lies in a
plane perpendicular to the direction of wave propagation, the resulting formulas
involve three independent combinations of anisotropic surface viscosities (see
Appendix B). The situation becomes even more complicated if the surfactant film
itself is in one of its anisotropic phases or in the vicinity of the phase transition.
The procedure of fitting the experimental spectrum by formulas with a larger
number of parameters is of limited use due to uncertainties in experimental spectra.
This may be remedied by further developments of the experimental techniques for
investigation of surface waves.
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Appendix A. Hydrodynamic Fields in Bulk Fluids

In this appendix the solutions to linearized hydrodynamic equations in bulk
isotropic and nematic fluids are summarized. The perturbations to equilibrium
dynamic fields are assumed to vanish at z! �1. The non-slip boundary condi-
tion is assumed for the velocities of bulk fluids adjacent to the interface, which means
the equality of the velocity of surfactant, vS, and that of the bulk fluids at an
interface, vjs:

vS ¼ vjs ð46Þ
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Isotropic Liquid

The linearized equations for the incompressible isotropic liquid are well known
(Landau and Lifshitz, 1987). They are the continuity equation

r � v ¼ 0 ð47Þ

and Navier-Stokes equations

qI @v

@t
¼ r � RI ð48Þ

where RI ¼ �pIþ 2gS is the hydrodynamic stress tensor, g is the shear viscosity of
the isotropic liquid, I is the isotropic tensor, and S ¼ 1

2 ½rv þ ðrvÞT� is the strain rate
tensor.

The general solution to the linearized form of these equations vanishing at
z!1 can be written as (Kramer, 1971)

~vvx ¼ iCI
1e�qz þ i

mI

q
CI

2e�mI z ð49Þ

~vvz ¼ CI
1e�qz þ CI

2e�mI z ð50Þ

~pp ¼ ixqI

q
CI

1e�qz ð51Þ

with

mI ¼ q2 þ ixqI

g

� �1=2

; Re mI > 0 ð52Þ

The quantities CI
1 and CI

2 are functions of q and x and are determined by the bound-
ary conditions at the interface as follows:

CI
1 ¼

iq~vvS
x þmI~vvS

z

mI � q
; CI

2 ¼ �
iq~vvS

x þ q~vvS
z

mI � q
ð53Þ

To write the explicit form of the force balance equations, we need the following
expressions for the components of the force FI exerted by the isotropic liquid:

~FFI
x ¼ gð@z~vvx � iq~vvzÞz¼þ0 ð54Þ

~FF
I

z ¼ ð2g@z~vvz � ~ppÞz¼þ0 ð55Þ

Nematic Liquid Crystal

To describe the dynamics of the nematic liquid crystal we shall use the linearized
form of the Eriksen-Leslie theory (De Gennes and Prost, 1993; Forster et al.,
1971). The hydrodynamic fields in the incompressible uniaxial nematic liquid crystal
are velocity vðr; tÞ, pressure pðr; tÞ, and director nðr; tÞ. They satisfy the continuity
equation, the equation for the acceleration, and the equation for the rate of change
of the director.

The continuity equation has the same form as for isotropic liquid and is given by
Equation (47).
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The equation for the acceleration has the form

qN @v

@t
¼ r � RN ð56Þ

where the stress tensor can be represented as a sum of reactive and viscous dissipative
contributions,

RN ¼ RNr þ RNv ð57Þ

The linearized form of the reactive contribution is given by

RNr ¼ �pIþ 1

2
ðn0h� hn0Þ �

k
2
ðn0hþ hn0Þ ð58Þ

where h is the molecular field, and k is the reactive material parameter. The linear-
ized form of the viscous contribution is given by

RNv ¼ 2n2Sþ 2ðn3 � n2Þðn0S � n0 þ n0 � Sn0Þ
þ 2ðn1 þ n2 � 2n3Þn0n0n0n0 : S

ð59Þ

where n1, n2, and n3 are nematic viscosities.
Let us compare the magnitude of contributions from the molecular field in

Equation (58) to viscous contributions in Equation (59). The molecular field is by
an order of magnitude h � Kq3v=x, K being the order of magnitude of the elastic
constants of a nematic. Since k � 1, the corresponding contribution into RNr is of
the same order. Taking its ratio to the viscous contributions, which have the order
nvq (n being the order of the nematic viscosity coefficients), we obtain the relative
magnitude of the molecular field contribution being r � Kq2=nx. Substituting typi-
cal values K � 10�12 N, n � 10�2 kg=ðm � sÞ, q � 104 m�1, and x � 104 s�1, we
obtain r � 10�2. The smallness of this value allows us to neglect the molecular field
in Equation (58) and write

RNr ¼ �pI ð60Þ

Finally, the equation for the director becomes not necessary for our purposes
because Equations (47) and (56) form a closed system with respect to pressure and
velocity fields.

Fourier-transforming the linearized form of Equations (47) and (56), we
obtain

�iq~vvx þ @z~vvz ¼ 0 ð61Þ

½ixqN þ ð2n2 � n3Þq2 � n3@
2
z �~vvx ¼ iq~pp ð62Þ

½ixqN � n3q2 þ ð2n1 � n3Þ@2
z �~vvz ¼ �@z~pp ð63Þ

The general solution to these equations vanishing at z! �1 can be cast as

~vvx ¼ �
i

q

X2

i¼1

mN
i CN

i emN
i z ð64Þ

~vvz ¼
X2

i¼1

CN
i emN

i z ð65Þ
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~pp ¼
X2

i¼1

AiC
N
i emN

i z ð66Þ

where

CN
1 ¼ �

iq~vvS
x �mN

2 ~vvS
z

mN
2 �mN

1

; CN
2 ¼

iq~vvS
x �mN

1 ~vvS
z

mN
2 �mN

1

; ð67Þ

Ai ¼ �
ixqN þ n3q2 � ð2n1 � n3ÞðmN

i Þ
2

mN
i

ð68Þ

and mN
i , i¼ 1, 2 are given by formulas

mN
i ¼ ðliÞ1=2; Re mN

i > 0 ð69Þ

where

li ¼
ixqN þ 2ðn1 þ n2 � n3Þq2 �

ffiffiffiffi
D
p

2n3
ð70Þ

D ¼ �x2ðqNÞ2 þ 4ðn1 þ n2 � 2n3Þq2 ½ixqN þ ðn1 þ n2Þq2� ð71Þ

To write the explicit form of the force balance equations, we need the following
expressions for the components of the force FN exerted by the nematic liquid crystal:

~FFN
x ¼ n3ðiq~vvz � @z~vvxÞz ¼ �0 ð72Þ

~FFN
z ¼ ð~pp� 2n1@z~vvzÞz ¼ �0 ð73Þ

Appendix B. Tilted Anchoring

This appendix presents, without derivation, the explicit expressions for the inverse
susceptibility matrix ðv�1Þij for the case of tilted nematic anchoring. We consider
the geometry in which the nematic director lies in a plane normal to the direction
of propagation of the surface wave and represent the equilibrium director in the form

n0 ¼ ð0; n0y; n0zÞ ð74Þ

Here n0y ¼ sin W0, n0z ¼ cos W0, where W0 is the angle between the director and the
interface in equilibrium. The value W ¼ p=2 corresponds to the homeotropic anchor-
ing (Equation (25)). The SQELS power spectrum can be obtained by inverting
matrix ðv�1Þij , given below, and substituting the element vzz into Equation (3).

The elements of the inverse susceptibility matrix are the following:

ðv�1Þxx ¼ E�0q2 þ ixgðmI � qÞ þ x
q

n3

X3

i¼1

½ðmN
i Þ

2 þ q2�LðxÞi ð75Þ

ðv�1Þxy ¼
x
q

n3

X3

i¼1

½ðmN
i Þ

2 þ q2�LðyÞi ð76Þ
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ðv�1Þxz ¼ xgðmI � qÞ þ x
q

n3

X3

i¼1

½ðmN
i Þ

2 þ q2�LðzÞi ð77Þ

ðv�1Þyx ¼ ixðn3 þ 2iqn2
0ya

S
3 Þ
X3

i¼1

mN
i BiL

ðxÞ
i ð78Þ

ðv�1Þyy ¼ ix
1

2
ðaS

4 þ n2
0ya

S
6 Þq2 þ gmI þ ðn3 þ 2iqn2

0ya
S
3 Þ
X3

i¼1

mN
i BiL

ðyÞ
i

" #
ð79Þ

ðv�1Þyz ¼ ix 2n0yn0za
S
3 q2 þ ðn3 þ 2iqn2

0ya
S
3 Þ
X3

i¼1

mN
i BiL

ðzÞ
i

" #
ð80Þ

ðv�1Þzx ¼ 2xqg� ix2q
mI � q

þ ix
X3

i¼1

ð2n1mN
i � AiÞLðxÞi ð81Þ

ðv�1Þzy ¼ ix
X3

i¼1

ð2n1mN
i � AiÞLðxÞi ð82Þ

ðv�1Þzz ¼ r0q2 � x2qI mI

qðmI � qÞ þ ix
X3

i¼1

ð2n1mN
i � AiÞLðxÞi ð83Þ

In these expressions the following notations are used:

L
ðxÞ
1 ¼

iqðB3 � B2Þ
D

ð84Þ

L
ðxÞ
2 ¼

iqðB1 � B3Þ
D

ð85Þ

L
ðxÞ
3 ¼

iqðB2 � B1Þ
D

ð86Þ

L
ðyÞ
1 ¼

mN
2 �mN

3

D
ð87Þ

L
ðyÞ
2 ¼

mN
3 �mN

1

D
ð88Þ

L
ðyÞ
3 ¼

mN
1 �mN

2

D
ð89Þ

L
ðzÞ
1 ¼

B2mN
3 � B3mN

2

D
ð90Þ

L
ðzÞ
2 ¼

B3mN
1 � B1mN

3

D
ð91Þ

L
ðzÞ
3 ¼

B1mN
2 � B2mN

1

D
ð92Þ

D ¼ B1ðmN
2 �mN

3 Þ þ B2ðmN
3 �mN

1 Þ þ B3ðmN
1 �mN

2 Þ ð93Þ
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Ai ¼ �
2mi

q2
ixqN � ½ðmN

i Þ
2 � q2�n2 � n2

0zðmN
i Þ

2n32

n o

� 1� n2
0zðmN

i Þ
2n123

½ðmN
i Þ

2 � q2�n32 þ 2n2
0zðmN

i Þ
2n123

( ) ð94Þ

Bi ¼
n0yn0z½ðn32 þ 2n2

0zn123ÞðmN
i Þ

2 � n32q2�
ixqN þ ðn2

0yn3 þ n2
0zn2Þq2 � ðn3 þ 2n2

0yn2
0zn123ðmN

i Þ
2
; ð95Þ

n32 � n3 � n2; n123 � n1 þ n2 � 2n3 ð96Þ

The quantities mN
i , i¼ 1, 2, 3, are given by formulas

mN
i ¼ ðliÞ1=2; Re mN

i > 0 ð97Þ

where

l1 ¼
ixqN þ n2q2

n2 þ n2
0zðn3 � n2Þ

ð98Þ

l2;3 ¼
1

2ðn3 þ 2n2
0yn2

0zn123Þ
½ixqN þ 2ðn3 þ n2

0zn123Þq2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2ðqNÞ2 þ 4n2

0z½ð2n2
0z � 1ÞixqN þ n2

0zðn1 þ n2Þq2�n123q2

q � ð99Þ

In contrast to the case of homeotropic anchoring considered in the main text, the
SQELS spectrum now depends upon three combinations of surface viscosity coeffi-
cients, namely, ðaS

4 þ bS
1 Þ, aS

3 , and ðaS
4 þ n2

0ya
S
6 Þ, which together with surface tension

r0 and compressional modulus E0 make the total number of the parameters of the
interface equal to five.
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