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Abstract – The scaled-particle theory equation of state for the two-dimensional hard-disk fluid
on a curved surface is proposed and used to determine the saddle-splay modulus of a particle-laden
fluid interface. The resulting contribution to saddle-splay modulus, which is caused by thermal
motion of the adsorbed particles, is comparable in magnitude with the saddle-splay modulus of a
simple fluid interface.
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Introduction. – The surface free-energy density of
fluid interfaces depends upon their curvature. This depen-
dence affects the nucleation in liquids [1–3], and has an
important role in determining the structure and dynam-
ics of the systems with complex fluid interfaces, such as
membranes or surfactants [4–6].
For small curvature of the interface, the dependence of

the surface free energy f upon the geometry of the inter-
face is conveniently described by the Helfrich curvature
expansion [7]

f = σ+2κ(H −H0)
2+ κ̄K. (1)

In this equation the geometry of the interface is char-
acterized by mean curvature H = 12 (1/R1+1/R2) and
Gaussian curvature K = 1/(R1R2), R1 and R2 being the
principal radii of curvature of the interface. The surface
tension σ, bending modulus κ, spontaneous curvature H0,
and saddle-splay modulus (or Gaussian rigidity) κ̄ are the
material parameters of the interface. The Helfrich curva-
ture expansion can be derived from microscopic models,
and allows explanation of the basic features and equilib-
rium shapes of biological membranes, vesicles, and liquid
interfaces [4–6].
By virtue of Gauss-Bonnet theorem, the contribution

of the last term in eq. (1) to the total free energy of the
system depends on the topology of the system. Indeed,
the value of the saddle-splay modulus affects the processes
which involve changes in the topology of the fluid inter-
faces [8–13].
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An interesting example of a system which can be macro-
scopically viewed as a complex fluid interface is the fluid
interface laden with colloidal micro- or nanoparticles. To
minimize the total interfacial energy, particles suspended
in a bulk fluid self-assemble on the fluid interface [14].
This process, first observed by Ramsden in 1903 [15], has
recently attracted significant scientific attention [16–19]. It
has also potential for a range of novel applications [20–24].
On a scale large compared to the size of the adsorbed

particles, a particle-laden interface may be viewed as
continuous. If the interface is isotropic on this scale, the
interfacial free energy can be described by eq. (1), and the
interface can be characterized by the material parameters
σ, κ, H0, and κ̄.
The present letter is devoted to the study of the saddle-

splay modulus κ̄ of a particle-laden fluid interface at low
surface concentration of the adsorbed particles. In this
case we can represent the interface as a two-dimensional
fluid on a curved surface. The main contribution to the
interaction between particles at low concentration comes
from the excluded volume (different particles cannot
occupy the same space). Hence we approximate the system
by a two-dimensional hard-disk fluid on a curved surface.
Hard-disk fluids in curved geometry were used before

to study packing of disks [25–28], ordering phase tran-
sition [29], topological defects [30], and as a model of
glass-forming liquids [26,27,31]. Several equations of state
were proposed for hard-disk fluids in spherical [32,33] and
hyperbolic [28,34,35] geometries.
In the present work we shall use the scaled-particle

theory (SPT) [36] to derive the equation of state of a
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two-dimensional hard-disk fluid on a curved surface. We
shall then use the resulting equation of state to determine
the saddle-splay modulus κ̄ for the particle-laden fluid
interface at low concentration of the adsorbed particles.

Saddle-splay modulus. – In accordance with eq. (1),
the saddle-splay modulus is given by the derivative of the
surface free-energy density with respect to the Gaussian
curvature,

κ̄=
∂f

∂K

∣

∣

∣

∣

K=0

. (2)

Using the expression for the excess free energy

βF ex

N
=

∫ ρ

0

Z − 1

ρ
dρ, (3)

where

Z ≡
βP

ρ
(4)

is the compressibility factor, ρ=N/A is the number
density (number of particles per unit area), P is pressure,
β = 1/kBT is the inverse temperature, we may represent
eq. (2) in the form

κ̄=
ρ

β

∫ ρ

0

1

ρ

(

∂Z

∂K

)

K=0

dρ, (5)

where the derivative is taken at constant particle density ρ.
Equation (5) can be used to calculate the saddle-splay

modulus of the interface from the curvature dependence
of the compressibility factor, which is generally given by
the equation of state of the system. We shall use the SPT
equation of state for a hard-disk fluid on a curved surface,
which is derived in the following sections.

SPT equation of state for hard disks. – The scaled-
particle theory was originally developed by Reiss et al. [36]
and further improved afterwards [37–41]. Applied to the
case of hard disks on a 2D plane, SPT leads to a particu-
larly simple equation of state which is nevertheless in good
agreement with computer simulation results throughout
most of the fluid range of densities [42,43].
SPT for two-dimensional hard-disk fluids in its simplest

form can be summarized as follows (see textbook [44] for
more details). The reversible work W (R0) is considered
which is required to create a circular cavity of radius R0
in the fluid of hard disks of radius R. The assumption is
made that for R0 > 0, W (R0) is given by a polynomial
in R0:

W (R0) =w0+w1R0+S(R0)P, R0 � 0. (6)

The last term S(R0)P (S(R) being the area of the disk of
radius R), which is dominant for large cavities (R0≫R),
follows from thermodynamics. For small cavities (0�R+
R0 �R), W (R0) can be written in form

W (R0) =−kBT ln [1− ρS(R0+R)] , −R�R0 � 0. (7)

The coefficients w0 and w1 are then determined by
requiring the work W (R0) and its derivative W

′(R0),
given by eqs. (6) and (7), to be continuous at R0 = 0. The
explicit expression for the excess chemical potential of the
fluid, µex =W (R), can be determined from eq. (6), and
subsequently used to write the SPT equation of state.
In the case of the flat surface, the area of the disk is

S(R) = πR2. (8)

The corresponding values of the coefficients wi are given
by

βw0 =− ln(1− η), βw1 =
2πρR

1− η
, (9)

where η= πR2ρ is the hard-disk packing fraction. The
chemical potential of the fluid, µ, is given by

βµ= lnΛ2ρ− ln(1− η)+
2η

1− η
+
βPη

ρ
, (10)

where Λ is the de Broglie thermal wavelength. The SPT
equation of state is then obtained from eq. (10) and the
thermodynamic relation

∂P

∂ρ
= ρ
∂µ

∂ρ
, (11)

and has the form reported by Helfand et al. [42]:

Z =
1

(1− η)2
. (12)

SPT equation of state for hard disks on a curved

surface. – The SPT equation of state for a hard-disk
fluid on a curved surface can be obtained in the same
way as in the flat case described above. The difference is
that expression (8) for the area of the disk of radius R is
no longer valid on a curved surface. For small Gaussian
curvature (K≪ 1/R2) we shall replace it by the formula
for the area of a geodesic disk on a two-dimensional
Riemannian manifold, obtained by Bertrand and Diguet
in 1848 [45],

S(R) = πR2(1− ξ)+ o(ξ), (13)

where we have introduced the dimensionless quantity

ξ ≡
KR2

12
. (14)

Requiring workW (R0) and its derivativeW
′(R0), as given

by eqs. (6) and (7), to be continuous at R0 = 0, we obtain
the following expressions for the coefficients wi:

βw0 =− ln[1−πR
2ρ(1− ξ)], (15)

βw1 =
2πRρ(1− 2ξ)

1−πR2ρ(1− ξ)
, (16)

and the chemical potential,

βµ = lnΛ2ρ− ln[1− η(1− ξ)]

+
2η(1− 2ξ)

1− η(1− ξ)
+
βPη(1− ξ)

ρ
. (17)
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Fig. 1: Compressibility factor Z as a function of reduced
number density of the fluid ρσ2, where σ≡ 2R is the particle
diameter. Circles represent Monte Carlo results for N = 400
hard disks on a sphere [29], the line corresponds to the SPT
equation of state (18).

Equations (17) and (11) lead to the following form of the
SPT equation of state for a hard-disk fluid on a curved
surface:

Z =
1− ηξ

[1− η(1− ξ)]2
. (18)

Figure 1 demonstrates a satisfactory agreement of the
compressibility factor Z calculated from eq. (18) with the
Monte Carlo results for hard disks on a sphere reported by
Giarritta et al. [29]. In the case of zero Gaussian curvature
(ξ = 0) eq. (18) coincides with eq. (12).

Saddle-splay modulus from SPT equation of

state. – The expression for saddle-splay modulus is
obtained by substituting the compressibility factor given
by the equation of state, eq. (18), into formula (5). The
result is

κ̄SPT =−kBT
η2(3− 2η)

12π(1− η)2
. (19)

Note that although using the truncated series in R given
by formula (13) for the area of the large disk in the
expression (6) is generally not justified, it is still suitable
for our purpose of calculating the saddle-splay modulus
since we are interested in the limit K→ 0.
The dependence of the saddle-splay modulus κ̄ upon

the disk packing fraction η, given by eq. (19), is presented
in fig. 2. The value of the saddle-splay modulus for
particle-laden interfaces appears to be smaller than the
values |κ̄| ∼ 10kBT typical for lipid monolayers [46]), but
is comparable to the value |κ̄| ≈ 12kBT for the surfaces of
simple fluids [47].

Conclusion. – The main message of this letter is
that the thermal motion of the particles adsorbed on a
fluid interface contributes to the saddle-splay modulus
of the interface. This result may have implications in
the structure and dynamics particle-laden systems that
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Fig. 2: The dependence of the saddle-splay modulus κ̄ upon
the disk packing fraction η, calculated using eq. (19).

allow topological changes, for example, fusion of particles
in Pickering emulsions, or structural reorganization in
particle-stabilized foams.
The simplest version of the scaled-particle theory allows

the construction of a rather simple equation of state for
a hard-disk fluid on a curved surface. In order to improve
the formula obtained for the saddle-splay modulus of
a particle-laden fluid interface, it seems reasonable to
attempt to construct the equation of state that gives
more accurate dependence of the compressibility factor
with respect to the Gaussian curvature of the interface,
which can be verified by using the virial expansion on the
curved surface or the computer modelling of the system.
In particular, in molecular-dynamics simulations of hard
disks with interfacial curvature it should be possible to
calculate specific free energy and saddle-splay modulus
directly and compare them with the predictions of the
theory.
The result can also be extended by taking into account

the influence on the value of the saddle-splay modulus of
other contributions to the interparticle interaction, such
as capillary, electrostatic, van der Waals etc., as well as
the role of particles’ anisotropy. The prediction of the
elastic properties of the interfaces with large concentration
of particles, in which two-dimensional solid structure
forms, presents another interesting and more complicated
problem.

∗ ∗ ∗

I thank Prof. C. M. Care for discussion of the results.
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