Determination of vibrational relaxation time of liquids with help of Landau-Placzek
ratio
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A new method of determination of the vibrational relaxation time of liquids based on using
the Landau-Placzek ratio is proposed. The influence of molecular anisotropy effects is taken into
account. The effectiveness of the method is illustrated on the example of substituted benzene.

I. INTRODUCTION

The vibrational relaxation phenomenon in the dif-
ferent types of the molecular gases and liquids is well
known [1, 2]. It is manifested most evidently in the
frequency dispersion of the absorption coefficient a(w)
(per wavelength) and longitudinal sound velocity ¢;(w).
In the majority of cases these parameters are measured
effectively by acoustical methods and allow one to re-
store the vibrational relaxation time with high accuracy.
However, if the values of the inverse vibrational relax-
ation time 1/7, turn out to be in the hyperacoustical
frequency interval w ~ (10° + 10'%) s~! then the inac-
curacy of the acoustical experiment increases noticeably.
In these cases the use of molecular light scattering [3]
is more preferrable way of determination of vibrational
relaxation time. The existence of vibrational relaxation
will affect properly the angular dependence of height and
half-width of Mandelshtam-Brillouin peaks, and there-
fore the angular dependence of the Landau-Placzek ratio.
The detailed investigation of this problem for the liquids
with quasiisotropic molecules was made in works [4-7].

The main purpose of the present work is to attract at-
tention to the expediency of use of the Landau-Placzek
ratio r for the experimental determination of the vibra-
tion relaxation time 7,. It is shown in section II that the
data on the scattering on small angles are the most suit-
able for the liquids with quasiisotropic molecules. The
relation between 7, and r is the most simple in this case.
Section IIT is devoted to the discussion of the dependence
of the Landau-Placzek ratio on the parameters describing
the relaxation of the molecular anisotropy. The values of
the vibrational relaxation time for substituted benzene
are calculated.

II. IDEA OF APPROACH

In simple liquids the ratio of the central component
intensity I. in the spectrum of polarized scattering to
the total intensity of Mandelshtam-Brilloin components
2Inp is described by the expression [3]
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where ¢, and cy are the specific heat capacities of system
at constant values of pressure and volume. The existence
of the internal relaxation process leads to deviation of r
from ry. The detailed analysis of this situation made in
[4-8] showed that
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Here 7, is the vibrational relaxation time, k¥ = |k|, k is
the wave vector of scattering, Ac®> = ¢2, — 3, ¢y and
Co are the sound velocities on extremely low and high

frequencies, v is defined by expression:
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The value wyp = v(k)k gives the position of the
Mandelshtam-Brillouin components and can be measured
with high accuracy.

In principle, the formula (2) allows to determine the
value 7, through 7, ro, ¢, co, 7, and k that are known.
But the using of it is much more expedient if (cok7,)” <
1. In this case
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so the value of 7, can be found in more direct way. Ex-
pressing in addition Ac?/cZ in terms of the ratio of the
heat capacities [9]:
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where ¢; is the vibrational part of the heat capacity, the
formula for determination of 7, can be presented in form:
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Formula (5) can be used for liquids and scattering
angles satisfying the inequality
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Here only r» = r(k) depends on the scattering angle and
decreasing the last one can satisfy the inequality (7) in
many cases.

The vibrational part of heat capacity ¢; can be estim-
ated with high accuracy with help of Planck-Einstein for-
mula [10]:
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where w; is the i-th vibrational mode frequency, g; is
the degeneracy of i-th frequency, % is the Planck’s con-
stant, R is the universal gas constant, 7" is the absolute
temperature. The values of vibrational normal modes
frequencies w; for liquids, considered by us, can be taken
from [11].

If in experimental conditions the inequality opposite
to (7) takes place, the vibrational relaxation time 7, can
be determined by the expression
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It is important to note, that formulas (5) and (9) are
correct if the coefficient

where nis the refraction index, p is the mass density, o
is the thermal expansion coefficient, is equal to unity. In
other cases one must substitute v’ = r/L instead of r.

The application of the formulas (5) and (9) for the
case of substituted benzyl is demonstrated with help of
the Table I. Besides the relaxation time, the values of
all the used parameters are indicated. The closeness of
the values of 7, obtained with a help of Landau-Placzek
ratio, to that, obtained by the acoustic methods, testifies
the effectiveness of the proposed method.

The formulas (2), (5) and (9) for determination of the
vibrational relaxation time are correct only in the case
when one can neglect the influence of the molecular an-
isotropy on the evolution of density fluctuations. This
condition does not take place for the majority of the mo-
lecular liquids. The liquids, listed in Table I, also require
more correct consideration.

| Substance | 1 | 2 | 3 | 4 | 5 |
r [16] 0.68 | 0.58 | 0.53 | 0.58 | 0.47

wy B, GHz [16] 22.6 | 26.0 | 25.2 | 26.0 | 26.0
Cpoo, J/(mol-K) [16]| 101 115 119 111 125
CVoo, J/(mol-K) [16]| 60 74 7 69 83
¢i, J/(mol-K) [16] 72 76 63 63 68

Tay DS [17] 10 | 20 | 13 | 22 | 9.2
v, m/s [17] 1119 | 1241 | 1210 | 1241 | 1275
n, cps [17] 0.64 | 0.95 | 0.85 | 0.81 | 0.61

po, g/cm® [17]  |1.1641|1.2681(1.2508 |1.25710.9974
700, p8 (Bqu. (5)) | 41 | 37 | 37 | 35 | 35
7o, ps (Bqu. (15)) | 39 | 32 | 34 | 30 | 33

Table I: Vibrational relaxation time for substituted ben-
zene at 293 K. 1 — paradifluorobenzene, 2 — orthofluoro-
chlorobenzene, 3 — metafluorochlorobenzene, 4 — para-
fluorochlorobenzene, 5 — metafluorotoluene.

III. ANISOTROPY EFFECTS

Let us consider the structure of the Landau-Placzek
ratio for the molecular liquids in which the anisotropy ef-
fects play an important role together with the vibrational
relaxation. Here it is very essential that the anisotropy
effects influence more considerably the character of the
spectral distribution than the total intensity of the light
scattering.

In the discussed case the set of variables p, T', and v,
describing the state of the system, must be completed
with the traceless tensor of anisotropy &;x: Zle &i = 0.
The last can be identified, for example, with the dens-
ity of molecular inertia tensor. Extended in such a way
the system of hydrodynamical equations has a standard
structure (see [12, 13]). The densities of the free energy
and of the dissipative function in the quadratic approx-
imation are equal to:
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Note, that the interaction between modes of anisotropy
tensor and the velocity field can be described by including
the respective contributions into the dissipative function
only. The contribution A g;;&;, into R must be negative
because the interaction of different modes leads to the
llowering of the entropy production. The condition R > 0
gives the inequality for dissipative coefficients: n\ > \3.

The linearized system of hydrodynamical equations is
presented and solved in the Appendix. As it is proposed
in [4], the vibrational part of the shear viscosity is given
by the equation:
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The final expression for the Landau-Placzek ratio is
rather cumbersome and inconvenient for using. It be-
comes relatively more simple only in the limit case
(cokty)® < 1. Here
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B = byk27, + bak>Ta.

One can easily see that at 7, = 0 formula (12) turns
into (4). The value of b, /7, is connected with the heat
capacities at constant volume and pressure and their vi-
brational part ¢; by the expression [9]:
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and co, can be found from the condition
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where v = n/p, vo = no/p, 1 is the total shear viscosity,
7o is its static value. In the limiting case of (CokTU)Q <1
the value wjy;p can be substituted for cgk. The value
T, can be obtained from the experiments on depolarized
light scattering [15]. As a result, all auxiliary values in
the equation for 7,
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where
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and X\ is determined by formula (6), can be measured
experimentally. If the influence of the anisotropy is small,
formula (15) is considerably simplified:
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where 7,0 is given by the expression (5).

In the other limiting case ((cok7,)” > 1) the expression
for r — ry becomes considerably more cumbersome and
its explicit form will not be given. It is always possible
to satisfy the inequality (cok7,)> < 1 by changing the
scattering angle.

IV. CONCLUSION

The use of the Landau-Placzek ratio is the convenient
way to determine the vibrational relaxation time. We

have determined in this way the values of 7, for substi-
tuted benzene, for which the acoustical data are absent.
The obtained values of 7, are close to the value of the
vibrational relaxation time for benzene. The agreement
of the obtained results with data on angular dependence
of Mandelshtam-Brillouin components half-width could
prove their correctness more consecutively. Th independ-
ent estimation for 7, can be obtained by substitution
7o determined from data on depolarized molecular light
scattering into (20). The more accurate is the determined
angular dependence of I'(k)/k?, the more accurate will be
the results of calculations. The use of Landau-Placzek ra-
tio is preferrable from this point of view, because one can
confine to the measuring of the parameters of spectra for
one scattering angle only. Note that the values of the vi-
brational relaxation time mentioned in the Table I match
the corresponding values of half-width of Mandelshtam-
Brillouin components.

Appendix

In accordance with (10,11) the system of linearized
equations for the state variables has the form:
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Here p1, T1 are the deflections of the density and the tem-
perature from their equilibrium values, cy is the specific
heat capacity at constant volume, « is the heat conduct-
ivity coefficient, n and ( are the static values of shear and
bulk viscosities, 7, is the vibrational part of the shear
viscosity, 7 = A/« is the anisotropy relaxation time,
v = A/A1. Total shear viscosity is determined by the
expression

n = A1 + no,

in which ng < A17; for the majority of molecular liquids
( see also [13]). It is evident that the equations for the
heat conductivity and the mechanism of the vibrational
relaxation do not change in the linear approximation.

The roots of a dispersion equation, corresponding to
the hydrodynamic equations (17), up to Drk/cy < 1,
Dyk/cy < 1 are equal to

S1 = 7DTIC2,
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Here v = v(k) satisfies the equation
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in which b, = pony(0), by = 4v/3, v = A\iy1/po is the
kinematic orientational viscosity. The value of I is given
by the expression
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Let us pass to the determination of the Landau-Placzek
ratio. We use the following assumption about the evident
form of the dielectric permeability:
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In accordance with (21) the spectrum of the polarized
part of the scattered light intensity is equal to
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As in [4-7], the contribution of the temperature fluctu-
ations is omitted. The relative value of the contribution,
given by the fluctuations of anisotropy, does not exceed
a few percents [14]. So, we will held only the first term
further. Take into account that
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We get from the expressions for the roots that the in-
tensity I. of the central component is stipulated by the
contributions of the roots s1, s2, and s3 only. Therefore
we get from (23):
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The integral intensity of the Mandelshtam-Brillouin com-
ponents is determined by the roots s; and s; and, in
accordance with (23), it is equal to
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The expressions (24) and (25) allow us to determine the
Landau-Placzek ratio r = I./21y 5.
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